
Progress on cloud native solution of Machine Learning as
a Service for HEP

Luca Giommi1,∗, Daniele Spiga2, Valentin Kuznetsov3, and Daniele Bonacorsi4,5

1INFN-CNAF, Viale Carlo Berti Pichat, 6/2, 40127 Bologna (ITALY)
2INFN Sezione di Perugia, Via Alessandro Pascoli 23c, 06123 Perugia (ITALY)
3Cornell University, 616 Thurston Ave., Ithaca, NY 14853 (USA)
4University of Bologna, Via Zamboni 33, 40126 Bologna (ITALY)
5INFN Sezione di Bologna, Viale Carlo Berti Pichat, 6/2, 40127 Bologna (ITALY)

Abstract. Nowadays Machine Learning (ML) techniques are successfully used
in many areas of High-Energy Physics (HEP) and will play a significant role
also in the upcoming High-Luminosity LHC upgrade foreseen at CERN, when
a huge amount of data will be produced by LHC and collected by the exper-
iments, facing challenges at the exascale. To favor the usage of ML in HEP
analyses, it would be useful to have a service allowing to perform the entire ML
pipeline (in terms of reading the data, processing data, training a ML model,
and serving predictions) directly using ROOT files of arbitrary size from local
or remote distributed data sources. The Machine Learning as a Service for HEP
(MLaaS4HEP) solution we have already proposed aims to provide such kind of
service and to be HEP experiment agnostic. To provide users with a real service
and to integrate it into the INFN Cloud, we started working on MLaaS4HEP
cloudification. This would allow to use cloud resources and to work in a dis-
tributed environment. In this work, we provide updates on this topic and dis-
cuss a working prototype of the service running on INFN Cloud. It includes
an OAuth2 proxy server as authentication/authorization layer, a MLaaS4HEP
server, an XRootD proxy server for enabling access to remote ROOT data, and
the TensorFlow as a Service (TFaaS) service in charge of the inference phase.
With this architecture a HEP user can submit ML pipelines, after being authen-
ticated and authorized, using local or remote ROOT files simply using HTTP
calls.

1 Introduction

The combined operations of the Large Hadron Collider (LHC) experiments yield approx-
imately 200 PB of data annually, necessitating to be stored, processed, and analyzed. To
enable physicists spread all over the world to access the required computing power and stor-
age, CERN employs a grid-based network called Worldwide LHC Computing Grid (WLCG).
The upcoming High Luminosity LHC (HL-LHC) program, scheduled to start in 2029, will
amass around 1 EB of data yearly from ATLAS and CMS, to which derived and simulated

∗e-mail: luca.giommi@cnaf.infn.it



data is added. This presents a significant challenge, as each experiment will enter a multi-
Exabyte per year data management regime. In this scenario, the role of Machine Learning
(ML) in High Energy Physics (HEP) will be critical.

ML techniques have found success across various areas of HEP, including online and of-
fline reconstruction, detector simulation, object identification, and Monte Carlo generation,
among others. However, developing and implementing ML projects for practical use is time-
intensive, demanding specific skills, and HEP analysts often lack the necessary data science
expertise to tackle these challenges independently. Compounding this issue is the gap be-
tween the HEP and ML communities. This is partially due to the prevalent use of the ROOT
[1] data format within HEP, which remains largely unfamiliar outside this domain. HEP data
relies on tree-based structures, where the event size is unpredictable (e.g. the particle count
may vary in each physics event) so that careful consideration is needed when using ROOT
data with ML frameworks. Therefore, offering a service to HEP physicists, particularly a
Machine Learning as a Service (MLaaS), could facilitate non-expert users in harnessing the
capabilities of ML. Such an approach could bridge the gap, promoting broader adoption of
ML techniques in HEP analyses.

We have developed a MLaaS solution for HEP, already discussed in previous works [2–
5], representing a cloud service that enables HEP users to execute ML pipelines using HTTP
calls. These pipelines utilize the MLaaS for HEP (MLaaS4HEP) framework, which allows
direct reading, processing, and ML model training using ROOT files of any size from local
or distributed data sources. The inference aspect is managed by the Tensorflow as a Service
(TFaaS) tool, which hosts pre-trained Tensor-based ML models and allows to get predictions
through HTTP calls.

In this work, we provide updates on this solution and discuss a working prototype of
the service running on INFN Cloud [6, 7]. Such a prototype can be created through the
INFN Cloud Orchestrator Dashboard by using a proper docker-compose file to manage the
deployment of the required services.

2 The developed MLaaS solution for HEP

Initially, the MLaaS solution for HEP we developed was composed of the MLaaS4HEP
framework and TFaaS, where the former is a Python software and the latter an HTTP ser-
vice. Over the years the MLaaS4HEP framework has been updated and new features have
been added, as well a cloud native solution has been developed for it. In the following, we
provide a description of the MLaaS4HEP framework, in its original implementation, and
TFaaS, then we provide details on the developments we made subsequently.

2.1 The MLaaS4HEP framework and training workflow

The MLaaS4HEP framework has been developed using the Python programming language,
and its code is accessible on the GitHub repository [8]. MLaaS4HEP facilitates the real-time
streaming of HEP datasets, stored in the event tree-based ROOT data format, into various
Python-based ML frameworks preferred by users which typically are designed to work with
row-based data structures, like NumPy [9] arrays and CSV files. MLaaS4HEP imposes a
specific constraint on the input ROOT files it accepts: they must have a flat ROOT TTree
structure, devoid of embedded C++ objects and without any nested arrays within branch
elements.

The reading component of MLaaS4HEP was developed using the Uproot library [10]
version 3 (Uproot3), which employs NumPy calls to efficiently convert data blocks from



Figure 1. Schematic representation of the steps performed in the MLaaS4HEP training workflow [2].

ROOT files into NumPy arrays. This data can be sourced from local ROOT files or remotely
accessed, including from WLCG sites, using the XRootD [11] protocol. MLaaS4HEP trans-
forms the Jagged Array representation of ROOT data and feeds it into the ML framework via
vector transformations applied to the I/O stream. A Jagged Array is a compact representation
of variable-size event data generated in HEP experiments. In MLaaS4HEP, a Python genera-
tor that can read chunks of data and gives as output a NumPy array with flat and Jagged Array
attributes is implemented. Such an implementation provides efficient access to large datasets,
as the entire dataset may not be loaded into the RAM of the training node, and it can be used
to parallelize the data flow into the ML workflow pipeline. Then MLaaS4HEP takes care to
transform HEP ROOT data presented as Jagged Array into a flat data format used by ML
frameworks. For that, a two-passes procedure has been implemented. In the first pass across
all the events, the maximum dimensionality of each Jagged Array attribute and the min/max
values of each attribute are determined. In the second pass, the Jagged Array attributes are
mapped into a single vector representation with appropriate size (maximum dimension com-
puted for each attribute) and padding (e.g. using NaN values or zeros). In addition, a proper
normalization of each attribute is provided during this phase.

Finally, the MLaaS4HEP framework uses data chunks, with the proportion of events pre-
sented in the input ROOT files, to train the ML algorithms which definition is provided by the
user code. The data flow schema used in the MLaaS4HEP training workflow when a Neural
Network (NN) is chosen as ML algorithm is reported in Fig. 1.



2.2 TFaaS architecture

The inference layer, which complements the MLaaS4HEP framework, is represented by
the TFaaS service based on the HTTP protocol, and its code is accessible on the GitHub
repository[12]. TensorFlow graphs were selected because of their versatility across differ-
ent programming languages, optimization tailored for GPUs and TPUs, and the backing they
receive from the TensorFlow library. TFaaS was written using the Go programming lan-
guage, leveraging its inherent concurrency support, seamless integration with TensorFlow,
and streamlined deployment process. Clients can upload TensorFlow models and access them
via REST APIs, making the framework versatile and usable for a wide range of applications,
including those outside of HEP.

2.3 Further developments on the MLaaS4HEP framework

In the following, the main updates made on the original version of the MLaaS4HEP frame-
work are reported.

• The MLaaS4HEP framework has been updated to support version 4 of Uproot (Uproot4)
in addition to Uproot3. This was necessary because there has been a breaking point for
the MLaaS4HEP compatibility with the Uproot library with the transition from Uproot3
to Uproot4 in the second half of 2020. Thanks to this update, it was also possible to
introduce pre-processing operations to data in MLaaS4HEP. Now the user can provide a
proper configuration file (in JSON format) with information to create new branches and
apply cuts both on existing and new branches.

• MLaaS4HEP has been originally used only with Multi Layer Perceptrons (MLPs) written
in Keras [13]. Subsequently, we have abstracted it to support any kind of Python-based ML
algorithm and framework. MLaaS4HEP has been successfully tested using: MLP written
in Keras and PyTorch [14]; MLP, Gradient Boosting, AdaBoost, Random Forest, Decision
Tree, kNN, SVM, and Logistic Regression written in Scikit-learn [15]; Gradient Boosting
written in XGBoost [16].

• We have added in MLaaS4HEP the possibility to print some of the most common metrics
in ML, i.e. Confusion Matrix, AUC, Precision, Recall, and F1.

• We have added a new training procedure for ML models. Considering the scenario of a
NN, the original MLaaS4HEP training procedure is performed chunk by chunk, where
each chunk is used one at a time to train the model for Nepochs epochs, whereas in the
new training procedure, all the chunks are used in each epoch. The original MLaaS4HEP
training approach is useful when the dataset is large and exceeds the amount of RAM of the
training node since only a chunk is stored at a time in the memory and the chunk size can
be adjusted to fit in the hardware resources. However, the user should carefully evaluate the
ML model convergence and validate it after each chunk. Conversely, the new MLaaS4HEP
training approach, which uses the entire dataset for each epoch, can guarantee the ML
model convergence, but the dataset should fit into RAM.

3 Cloud native solution of MLaaS4HEP

To provide a real MLaaS solution for MLaaS4HEP, a cloud native application has been de-
veloped, and to achieve this goal, the following guidelines had to be followed:

• provide APIs through which a user can interact with it;

• develop interconnected microservices, each of them in charge of different tasks;



• containerize each microservice.

The following microservices have been identified as pillars of the entire MLaaS4HEP
service:

• a MLaaS4HEP server, which allows users to submit MLaaS4HEP training workflow re-
quests and manage all the actions related to it;

• an authentication/authorization layer, which allows to authenticate the users and authorize
their requests to the MLaaS4HEP server;

• an XRootD Proxy server, which allows to use X.509 proxies for the remote access of data.

The MLaaS4HEP server has been developed using the Flask [17] framework and it has
been equipped with APIs that allow the user to submit and manage a MLaaS4HEP training
workflow by making HTTP calls via curl. The authentication/authorization layer has been
implemented using an OAuth2 Proxy server [18] and it has been configured in a way that a
user of the CMS experiment can use the MLaaS4HEP server. In particular, he/she can register
a client choosing https://cms-auth.web.cern.ch/ as authorization server and use the oidc-agent
tool [19] to get back an access token. Then is the proxy’s task to validate the user-supplied
token, authorizing him/her to exploit the MLaaS4HEP functionalities. The XRootD Proxy
server has been developed using the compose-xrootd solution [20] that allows to create and
renew X.509 proxies to access remote ROOT files located on WLCG sites.

All these services have been deployed as Docker [21] containers and can be connected
with TFaaS (and an addittional OAuth2 Proxy server) in order to use the trained ML models
for inference. A schematic representation of this solution can be found in Fig. 2.

4 The MLaaS4HEP service on INFN Cloud

INFN offers to users a comprehensive and integrated set of Cloud services through its ded-
icated INFN Cloud infrastructure. The INFN Cloud portfolio of services can be accessed
via an easy-to-use web interface (the INFN Cloud Orchestrator Dashboard) but also via
command-line interface. It is based on composable, scalable, open-source solutions and can
be easily extended directly by the end users themselves. The INFN Cloud services are based
on modular components and span the IaaS, PaaS, and SaaS models for both computing and
data. All these services are described by TOSCA templates [22], which can refer internally
to other components, such as Ansible [23] playbooks and HELM [24] charts. One of the
services available in INFN Cloud is docker-compose which deploys a Virtual Machine (VM)
with docker engine and docker-compose pre-installed and optionally runs a docker-compose
file fetched from the URL specified by the user.

Thus, we took advantage of the docker-compose service, already available in INFN
Cloud, to deploy a prototype of the MLaaS4HEP service. Once the related button is se-
lected in the Orchestrator Dashboard (see Fig. 3), the user is redirected to a configuration
page where he/she is asked to provide some information aimed at setting up:

• the resource used to host the application (e.g. the RAM size, the number of CPUs, and the
ports to open), see Fig. 4;

• the URL of the docker-compose file to be used, see Fig. 5;

• variable keys and the corresponding values to be used by the application during the deploy-
ment process, see Fig. 5;

• the cloud provider where to schedule the service deployment, e.g Backbone-Bari,
Backbone-CNAF, and Cloud-CNAF, see Fig. 6.



Figure 2. Solution connecting two OAuth2-Proxy servers, MLaaS4HEP server, XRootD Proxy server,
and TFaaS. Firstly, a client uploads a tarball with the necessary files to the MLaaS4HEP server. Then
he/she submits a MLaaS4HEP training workflow (which consists in running a Docker container in the
server) where remote ROOT files can be read using valid X.509 proxies, and the ML model is trained
and saved. This model is accessed by the TFaaS service that uses it to make inference. In front of the
MLaaS4HEP and TFaaS servers, two OAuth2-Proxy servers are used to handle user authentication and
request authorization.

Figure 3. Overview of some services available in the INFN Cloud Orchestrator Dashboard.



Figure 4. Parameters for the docker-compose service available in the INFN Cloud Orchestrator Dash-
board, e.g. the RAM size, the number of CPUs, and the ports to open of the resource used to host the
application to be deployed.

Figure 5. Parameters for the docker-compose service available in the INFN Cloud Orchestrator Dash-
board, in particular the URL of the docker-compose file to be used, and the variable keys with the
corresponding values to be used by the application during the deployment process.

Figure 6. Parameters for the docker-compose service available in the INFN Cloud Orchestrator Dash-
board, in particular the cloud provider where to schedule the service deployment.

This information is used to populate a TOSCA template, which is then submitted to the
PaaS Orchestrator [6] as a service deployment request. As an outcome, the system will
provide the IP address of the deployed VM. Since the MLaaS4HEP service requires an SSL
certificate (for the two OAuth2-Proxies) and a Grid certificate (for the XRootD Proxy), we
used the docker-compose service in the INFN Cloud Orchestrator Dashboard to deploy the
VM with the docker engine and docker-compose pre-installed. Then, once logged into the



VM we copied our certificates to the proper locations, and subsequently the docker-compose
file [25] we prepared has be used to deploy the entire service.

At this point, once we get an access token from the authorization server with the oidc-
agent tool, we can contact the MLaaS4HEP or TFaaS servers using curl, e.g. in the following
ways:

curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" -H "Content-Type: application/json"
-d @submit.json https://VM_ip:MLaaS4HEP_port/submit

curl -L -k -H "Authorization: Bearer ${TOKEN_TFAAS}" -X POST
-H "Content-type: application/json" -d @predict_bkg.json https://VM_ip:TFaaS_port/json

The former command is used to submit a MLaaS4HEP training workflow exploiting the
information stored in the submit.json file to train the ML model which definition is provided
by the user. The latter command allows to get the prediction on a given event (defined in the
predict_bkg.json file) using the trained ML model. A demonstration showing the commands
that can be used to interact with the MLaaS4HEP and TFaaS servers can be found in [26].

5 Conclusions

In this paper, we presented a working prototype of the MLaaS4HEP service, a cloud native
solution that allows to perform ML pipelines using HEP data, deployed using the INFN
Cloud Orchestrator Dashboard. The entire service is composed of several components which
are containerized and deployed using the docker-compose service. With this solution a HEP
user can submit ML pipelines, after being authenticated and authorized, using local or remote
ROOT files simply using HTTP calls.

Currently, there are some working directions under investigation and development for
the MLaaS4HEP project, e.g. involving parallelization of I/O and distributed ML training,
making MLaaS4HEP usable also for other tasks (e.g. regression problems and image classi-
fication) as well as accepting other data formats as input, and providing a general inference
service.

References

[1] About ROOT, https://root.cern/about/
[2] V. Kuznetsov, L. Giommi, D. Bonacorsi, Comput. Softw. Big Sci. 5, 17 (2021),
2007.14781

[3] L. Giommi, V. Kuznetsov, D. Bonacorsi, D. Spiga, PoS ISGC2021, 019 (2021)
[4] L. Giommi, D. Spiga, V. Kuznetsov, D. Bonacorsi, M. Paladino, PoS ISGC2022, 012

(2022)
[5] L. Giommi, D. Spiga, V. Kuznetsov, D. Bonacorsi, PoS ICHEP2022, 968 (2022)
[6] D. Salomoni, I. Campos, L. Gaido, G. Donvito, M. Antonacci et al., INDIGO-

Datacloud: foundations and architectural description of a Platform as a Service ori-
ented to scientific computing (2016), https://arxiv.org/abs/1603.09536

[7] INFN Cloud, https://www.cloud.infn.it
[8] MLaaS4HEP, https://github.com/lgiommi/MLaaS4HEP
[9] NumPy: the fundamental package for scientific computing with Python, https://
numpy.org

[10] Uproot, https://uproot.readthedocs.io/en/latest/index.html
[11] XRootD, https://xrootd.slac.stanford.edu

https://root.cern/about/
https://arxiv.org/abs/1603.09536
https://www.cloud.infn.it
https://github.com/lgiommi/MLaaS4HEP
https://numpy.org
https://numpy.org
https://uproot.readthedocs.io/en/latest/index.html
https://xrootd.slac.stanford.edu


[12] TFaaS, https://github.com/vkuznet/TFaaS
[13] Keras: Simple. Flexible. Powerful., https://keras.io
[14] PyTorch, https://pytorch.org
[15] scikit-learn: Machine Learning in Python, https://scikit-learn.org/stable/
[16] XGBoost Documentation, https://xgboost.readthedocs.io/en/stable/
[17] Flask, https://flask.palletsprojects.com/en/3.0.x/
[18] OAuth2-Proxy server, https://oauth2-proxy.github.io/oauth2-proxy/
[19] oidc-agent, https://indigo-dc.gitbook.io/oidc-agent/
[20] compose-xrootd, https://github.com/comp-dev-cms-ita/compose-xrootd
[21] Docker: Accelerated Container Application Development, https://www.docker.

com

[22] INFN Cloud customized Tosca templates, https://baltig.infn.it/infn-cloud/
tosca-templates

[23] Ansible is Simple IT Automation, https://www.ansible.com
[24] HELM: The package manager for Kubernetes, https://helm.sh
[25] Docker-compose file to deploy the MLaaS4HEP service, https://github.com/

lgiommi/MLaaS4HEP_server/blob/master/docker-compose.yaml

[26] MLaaS4HEP service demo, https://www.youtube.com/watch?v=_JHg4oTeVbc

https://github.com/vkuznet/TFaaS
https://keras.io
https://pytorch.org
https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/
https://flask.palletsprojects.com/en/3.0.x/
https://oauth2-proxy.github.io/oauth2-proxy/
https://indigo-dc.gitbook.io/oidc-agent/
https://github.com/comp-dev-cms-ita/compose-xrootd
https://www.docker.com
https://www.docker.com
https://baltig.infn.it/infn-cloud/tosca-templates
https://baltig.infn.it/infn-cloud/tosca-templates
https://www.ansible.com
https://helm.sh
https://github.com/lgiommi/MLaaS4HEP_server/blob/master/docker-compose.yaml
https://github.com/lgiommi/MLaaS4HEP_server/blob/master/docker-compose.yaml
https://www.youtube.com/watch?v=_JHg4oTeVbc

	Introduction
	The developed MLaaS solution for HEP
	The MLaaS4HEP framework and training workflow
	TFaaS architecture
	Further developments on the MLaaS4HEP framework

	Cloud native solution of MLaaS4HEP
	The MLaaS4HEP service on INFN Cloud
	Conclusions

