
A grid site reimagined: building a fully cloud-native ATLAS
Tier 2 on Kubernetes

Ryan Paul Taylor1,∗, Jeffrey Ryan Albert1, and Fernando Harald Barreiro Megino2

on behalf of the ATLAS Computing Activity
1University of Victoria, British Columbia, Canada
2University of Texas at Arlington, Texas, United States of America

Abstract. The University of Victoria (UVic) operates an Infrastructure-as-
a-Service scientific cloud for Canadian researchers, and a Tier 2 site for the
ATLAS experiment at CERN as part of the Worldwide LHC Computing Grid
(WLCG). At first, these were two distinctly separate systems, but over time we
have taken steps to migrate the Tier 2 grid services to the cloud. This process
has been significantly facilitated by basing our approach on Kubernetes, a ver-
satile, robust, and very widely adopted automation platform for orchestrating
containerized applications. Previous work exploited the batch capabilities of
Kubernetes to run grid computing jobs and replace the conventional grid com-
puting elements by interfacing with the Harvester workload management sys-
tem of the ATLAS experiment. However, the required functionality of a Tier 2
site encompasses more than just batch computing. Likewise, the capabilities
of Kubernetes extend far beyond running batch jobs, and include for exam-
ple scheduling recurring tasks and hosting long-running externally-accessible
services in a resilient way. We are now undertaking the more complex and chal-
lenging endeavour of adapting and migrating all remaining services of the Tier 2
site — such as APEL accounting and Squid caching proxies, and in particular
the grid storage element — to cloud-native deployments on Kubernetes. We aim
to enable fully comprehensive deployment of a complete ATLAS Tier 2 site on
a Kubernetes cluster via Helm charts, which will benefit the community by pro-
viding a streamlined and replicable way to install and configure an ATLAS site.
We also describe our experience running a high-performance self-managed Ku-
bernetes ATLAS Tier 2 cluster at the scale of 8 000 CPU cores for the last two
years, and compare with the conventional setup of grid services.

1 Introduction

For over a decade, the ATLAS experiment [1] at the LHC and UVic have been at the fore-
front of evaluating and adopting cloud technologies, particularly in the context of using
cloud infrastructure to deliver virtual resources for processing high energy physics work-
loads, and integrating this approach with the paradigm of grid computing [2][3][4][5]. More
recently [6], this activity (and the field of cloud computing in general) has coalesced around
container-based methodologies such as Kubernetes, a platform for managing and automating

∗e-mail: rptaylor[at]uvic[dot]ca
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



containerized applications in a distributed and reliable manner using a microservice architec-
ture, marking a new approach known as cloud-native computing, which shifts the focus from
provisioning virtual machines on an Infrastructure-as-a-Service cloud to deploying and or-
chestrating containers in a distributed cluster. In broad terms, cloud-native computing can be
understood as employing abstraction and virtualization foremost throughout the application
level, rather than solely at the infrastructure level.

Kubernetes and cloud-native computing present a significant opportunity. Kubernetes is
the second-largest open-source project in the world, after the Linux kernel, with approxi-
mately 75 000 contributors [7], and it is estimated that there are several million Kubernetes
clusters deployed [8]. The volume of development, engineering, testing and quality assur-
ance effort that is put into Kubernetes constitutes a highly beneficial network effect and
positive feedback loop.1 Managed Kubernetes offerings are available from all major com-
mercial cloud providers, an increasing number of research and academic sites are deploying
on-premise clusters, and the available knowledge pool is vast. It is frequently the case that
an internet search for a problem will quickly yield useful information and readily applicable
solutions provided by others who have already confronted and addressed it.

Our previous work began capitalizing on this opportunity by demonstrating the use of
Kubernetes to run batch jobs for ATLAS at a limited scale, augmenting the computing re-
sources of a traditional Tier 2 site [6]. Based on that success, we have significantly expanded
the program of work to encompass and transform the entire UVic ATLAS Tier 2 site: using
Kubernetes as the exclusive full-scale computing resource, migrating all ancillary services
from traditional servers to Kubernetes, and integrating the grid storage into Kubernetes. Our
approach centers as much as possible on Helm, a cloud-native tool for configuration and
lifecycle management of applications on Kubernetes. Helm applications are installed and
configured via charts, which are packages of YAML templates and customizable values that
define the application in Kubernetes. Unlike traditional package or configuration manage-
ment tools, which typically perform imperative operations on top of pre-existing servers, a
Helm chart can fully encapsulate and represent the state of a complex distributed application
and enable it to be deployed in a reproducible manner.

2 Tier 2 computing

2.1 Harvester operations

Building on our previous experience [6] running PanDA [9] workloads on Kubernetes via the
resource-facing Harvester [10] system, further collaboration between the UVic and PanDA
teams led to the sharing of operational experience in order to optimize job execution, improve
configurability and robustness, and reduce operational overhead. Configuration templates for
job submission, including general parameters such as the container image, are managed in
Git. Site administrators can edit a template in Git, and it will automatically be pulled and ap-
plied on the Harvester instance. Operations teams can now also edit various job configuration
parameters directly in the CRIC information system [11], from which they will be dynami-
cally read and applied by Harvester. For example, we can easily modify CPU, memory, and
ephemeral storage requests and limits in order to optimize resource usage while maintaining
a sufficient margin for excess usage to avoid overly strict termination of jobs. Also, config-
uration of affinities and anti-affinities between jobs of different sizes can facilitate efficient
scheduling and optimal node utilization. Operational experience has also guided us to re-
implement the handling of jobs during short unavailabilities of the network or Kubernetes

1Conversely, small niche software projects can struggle to reach sustainability and gain adoption.



API. Previously, Harvester would terminate jobs if it could not retrieve their status from the
Kubernetes API within a fixed time, but now it tolerates periods when the API is unreachable
or slow to respond so that jobs can continue running during brief interruptions.

2.2 Cluster operations and scaling

After establishing proof of concept by running at the scale of about 500 CPU cores for over a
year, we prepared for a production-ready deployment by first creating a smaller but otherwise
identical Kubernetes cluster, complete with a PanDA queue for functional test jobs, for de-
velopment and acceptance testing. Prior to implementation on the production cluster, every
configuration change and upgrade is first tested on the development cluster — an essential
practice for reliable operation. Deploying and maintaining an additional cluster is relatively
easy since we are using virtual infrastructure provided by our OpenStack cloud.

As we expanded the production cluster to about 8 000 cores, as shown in Figure 1, we
implemented several improvements in order to keep the cluster reliable and performant at
this scale, such as using a faster type of storage volume for the IOPS-intensive distributed
database etcd, increasing the size of the etcd backend disk quota so that compaction can clean
up old records before the database exceeds the quota, applying priority classes to important
cluster services to ensure they can run reliably without resource contention when the cluster
is fully utilized, reducing the load on the data store of the Calico network fabric by enabling
the Typha daemon for caching queries, and trunking a VLAN to all the hypervisor nodes in
our cloud so that the VMs of the cluster can be in a flat layer 2 network, thereby avoiding the
need for network encapsulation in Calico and eliminating packet overhead for traffic in the
cluster. However, this network mode entails the use of BGP to distribute routes in the cluster,
by establishing a full mesh of peerings between nodes, implying resource usage that scales
quadratically with the number of nodes. With over 130 nodes currently in the production
cluster, we had to allocate more RAM to Calico, but scaling the cluster beyond the current
level will require setting up dedicated nodes functioning as BGP route reflectors, to form a
more efficient partial mesh topology.

Figure 1: Number of CPU cores used by ATLAS jobs running on the CA-VICTORIA-
WESTGRID-T2 Kubernetes cluster.



3 Tier 2 storage

We have operated a dCache [12] storage element on physical hardware since our site was
commissioned in 2010. However, motivated by the goals of physical consolidation of all
data onto our Ceph [13] cloud storage cluster and logical consolidation of all site services
onto Kubernetes in our cloud, we are evaluating EOS [14] as an alternative solution. Thanks
to the ScienceBox [15] project, a Helm chart for EOS is available, making it easy to install
on Kubernetes. Moreover, using EOS on a CephFS filesystem is a solution that has been
previously investigated [16].

However, the use cases supported by the EOS Helm chart so far have only covered access
for trusted internal clients using local authentication within a Kubernetes cluster, with access
methods such as a FUSE mount and the EOS CLI, whereas a grid storage element must be
accessible to the world via the XRootD and HTTPS protocols, using X509 VOMS proxies
for authentication and authorization, which further entails installing host certificates and grid
certificate authorities, and regularly updating certificate revocation lists.

We have contributed several improvements to the EOS Helm chart to extend its func-
tionality using generic configuration hooks to support these needs, and designed a scalable
network architecture for external access to EOS in Kubernetes. Whereas a traditional server-
based application deployment can be exposed to an external network by simply setting up a
publicly routable IP address on the server, Kubernetes includes layers of network function-
ality providing advanced capabilities such as service discovery, load balancing as a service,
and IP failover for high availability, which enable dynamic scaling of an application, spread-
ing traffic across multiple nodes or containers, and fault tolerance against the loss of any
individual node.2

Our standard network architecture for simple low-bandwidth web applications on Kuber-
netes involves ingress to the cluster via a single IP address, which has high availability across
cluster nodes by means of the PureLB load balancer, and the Traefik ingress controller, which
handles TLS termination and service routing (primarily at layer 7, based on header inspection
in the case of HTTP, as well as Server Name Indication (SNI)), as shown in Figure 2a. How-
ever, an ingress controller can not be used for EOS because it is not possible to use SNI in
the XRootD protocol [17]. More importantly, for a high-performance Tier 2 storage element
we need a method of load-balancing that can provide aggregate bandwidth of &100 Gb/s, far
more than the capacity of a single typical node. Also, the design of EOS requires each data
serving component (called an FST) to be individually addressable, which clashes somewhat
with the usual Kubernetes approach of a single service backed by many identical containers.
However both of these problems can by solved by reworking the FST service definitions3 and
leveraging PureLB to manage and link an IP address to each one, as shown in Figure 2b. This
enables the aggregate bandwidth of an EOS instance on Kubernetes to be increased in the
same natural way as for a traditional server-based EOS deployment, by horizontally scaling
the number of FSTs.

A major advantage of using Helm to deploy EOS is that we can leverage our pair of devel-
opment and production Kubernetes clusters to trivially deploy a pair of identically-configured
EOS instances for testing and production, whereas building and maintaining an additional
grid storage element on traditional servers would incur overhead effort, and maintaining con-
figuration parity between them would be difficult. After finalizing some details of the Helm
chart configuration, we plan to benchmark the performance of EOS and CephFS and evaluate
the deployment for production-readiness.

2For further information see https://kubernetes.io/docs/concepts/services-networking/.
3This is accomplished by using the Helm range operator to create a LoadBalancer-type Service for each member

of the FST StatefulSet, and specifying the statefulset.kubernetes.io/pod-name selector for each one.

https://kubernetes.io/docs/concepts/services-networking/


(a) A simple architecture for basic web applica-
tions, leveraging an ingress controller. The traf-
fic flows through a single node, and is routed by
the ingress controller to the appropriate applica-
tion service, which load balances at the service
level to a set of identical backing containers.

(b) Network architecture for EOS on Kubernetes.
Each FST has its own individual service, linked to
a private IP and bound to different nodes because
the PureLB agent prefers to spread IPs across
nodes to maximize available bandwidth. The ag-
gregate bandwidth for N FSTs is that of N nodes.

Figure 2: Different Kubernetes network architectures for receiving and routing traffic. The
traffic arrives at the cluster via one or more OpenStack public floating IP addresses, each
attached to a private IP. The PureLB load balancer agents use gratuitous ARP to bind each
private IP address to a node. Kube-proxy implements the Kubernetes service discovery and
routing mechanism and provides transport-layer load balancing within the cluster using IPVS.

4 Tier 2 services

Aside from providing computing and storage resources, the other services an ATLAS Tier 2
site must operate are Frontier-squid and APEL accounting.

4.1 Frontier-squid caching service

Frontier-squid is a caching HTTP proxy service, deployed as a forward proxy to provide scal-
able low-latency access to both CVMFS [18] and conditions data [19]. To deploy Frontier-
squid on Kubernetes, we selected the Helm chart from the ScienceBox [15] repository for
its simple, lightweight and container-native approach. However before deploying it in pro-
duction, we contributed a number of improvements to security, robustness and configurabil-
ity, such as running as an unprivileged user, setting resource requests and limits, supporting
modification of ACLs and network service configuration, and adding a backup URL for re-
dundancy of readiness probes. Using a Kubernetes service and deployment, as shown in
Figure 3, makes it trivial to scale up the number of Frontier-squid instances as needed, with
client traffic automatically load-balanced across them.

4.2 APEL accounting service

Clients for APEL accounting [20] exist for several traditional batch systems, but to pub-
lish accounting records representing the CPU usage delivered by our Kubernetes cluster, we



Figure 3: Architecture of the Frontier-squid deployment on Kubernetes.

had to develop one for Kubernetes. Publishing records to the APEL server was challeng-
ing because the required information and record format are not documented [21]. However,
collecting and processing the job metrics in Kubernetes was substantially facilitated by lever-
aging built-in functionality of Kubernetes, as shown in Figure 4. It was only necessary to
write a modest Python program, and some YAML for the Helm chart to deploy it, in order to
create a complete production-ready solution for APEL accounting on Kubernetes, which we
call KAPEL.4

Figure 4: Architecture of KAPEL. The KAPEL Python program runs as a regularly scheduled
Kubernetes CronJob. It retrieves records from the Prometheus time-series database, using
PromQL to formulate a query that aggregates, filters, and analyzes metrics. Prometheus
scrapes and stores metrics from kube-state-metrics, which presents snapshots of the current
state of compute jobs in the cluster. After querying and processing the job metrics, KAPEL
prepares accounting reports and sends them to the APEL server.

4The Python code and Helm chart for KAPEL are available at https://github.com/rptaylor/kapel.

https://github.com/rptaylor/kapel


5 Summary

We are forging a path to running a fully cloud-native ATLAS Tier 2 site on Kubernetes. The
resilience and automation provided by Kubernetes have significantly simplified site opera-
tions and reduced the amount of time spent on mundane technical issues. Re-using existing
monitoring and metrics components in the Kubernetes ecosystem to implement an APEL ac-
counting solution illustrates that the burden of developing and maintaining middleware can
be much lighter when cloud-native practices are adopted. Similarly, built-in capabilities of
Kubernetes provide the functionality needed for remote submission of jobs to an API and
scheduling jobs for execution on cluster nodes, eliminating the need to deploy a separate grid
computing element and batch system.

This work also has potential implications and benefits for the deployment of grid sites
more broadly. While ATLAS and the Worldwide LHC Computing Grid have a very strong
history of collaborative information sharing and open-source software practices, the manner
in which the software is deployed and operated across the grid tends to be highly variable
to the point of being unique to each site. Building a new WLCG Tier 2 site and batch clus-
ter from scratch, commissioning it for production-readiness, and smoothing out the initial
bugs is a daunting process that typically requires pre-existing familiarity with specialized
grid software, and can take approximately 6–12 months of time. Integrating the grid middle-
ware components together into a functional site, with many different operating system and
hardware options, further compounded by the number of available batch systems and storage
systems to choose from, is neither straightforward nor standardizable.

Because of these environment-specific differences between sites, sites often develop their
own specialized deployment tools and recipes from scratch, or forego automation altogether
and rely on manual configuration and operation instead. This situation reveals the need for
abstraction layers to hide underlying details and disparities, and stems from the nature of tra-
ditional deployment methodologies whereby software is provided as plain packages of files
to be installed on individual servers, but deploying a distributed application requires config-
uring and integrating several components together across multiple servers.5 This integration
work, and the specialized recipes for facilitating it, are sometimes referred to as “glue”, in
the sense of sticking components together to form a larger whole. Unfortunately, attempting
to share or reuse glue is often messy and impractical.

Containerization changes this by delivering pieces of software as encapsulated micro-
services, which can be orchestrated on a platform like Kubernetes, allowing the relationships
between services to be clearly defined and managed, so that a distributed application can be
neatly assembled from its component pieces. Moreover, with Helm charts, a deployment
becomes code, which can be easily shared, re-used, and improved, bringing the same benefits
of open source that are eminent in software development into the operational realm6 of system
administration: the more that people work together in a framework where improvements
can be contributed back to a shared code base, the more everyone benefits together. When
operators’ efforts are mostly spent on developing deployment recipes and addressing issues
that are primarily local and site-specific in nature, our collective efforts are less productive.
On the other hand, by channeling operational effort into improvements that benefit all users
of a Helm chart, we can realize a higher return on investment of effort. Adopting Kubernetes
and Helm has already resulted in significant operational benefits for our site, and we believe
that it can also reduce the time and effort required to deploy a new ATLAS Tier 2 site by
approximately an order of magnitude.

5For example, configuring one system to connect to a database on another system, opening a firewall to allow
communication between systems, etc.

6This is a hallmark of the DevOps paradigm.



References

[1] The ATLAS Collaboration, J. Inst. 3, S08003 (2008)
[2] F. H. Barreiro Megino et al on behalf of the ATLAS Collaboration,

J. Phys. Conf. Ser. 396, 032011 (2012)
[3] S. Panitkin et al on behalf of the ATLAS Collaboration,

J. Phys. Conf. Ser. 513, 062037 (2014)
[4] R. P. Taylor et al on behalf of the ATLAS Collaboration,

J. Phys. Conf. Ser. 664, 022038 (2015)
[5] R. P. Taylor et al on behalf of the ATLAS Collaboration,

J. Phys. Conf. Ser. 898, 052008 (2017)
[6] F. H. Barreiro Megino et al on behalf of the ATLAS Collaboration,

EPJ Web Conf. 245, 07025 (2020)
[7] https://www.cncf.io/reports/kubernetes-project-journey-report/ [accessed 2023-08-02]
[8] https://cloudnativenow.com/topics/how-many-kubernetes-clusters-exist-today/

[accessed 2023-08-02]
[9] T. Maeno et al on behalf of the ATLAS Collaboration,

J. Phys. Conf. Ser. 898, 052002 (2017)
[10] T. Maeno et al on behalf of the ATLAS Collaboration,

EPJ Web Conf. 214, 03030 (2019)
[11] A. Anisenkov et al, EPJ Web Conf. 245, 03032 (2020)
[12] A. P. Millar et al, J. Phys. Conf. Ser. 396, 032077 (2012)
[13] S. A. Weil et al, OSDI ’06, 307–320 (2006)
[14] A. J. Peters et al, J. Phys. Conf. Ser. 664, 042042 (2015)
[15] E. Bocchi et al, EPJ Web Conf. 245, 07047 (2020)
[16] A. J. Peters & D. C. van der Ster, Comp. Softw. Big Sci. 5, 25 (2021)
[17] https://github.com/xrootd/xrootd/issues/1951 [accessed 2023-08-02]
[18] A. De Salvo et al on behalf of the ATLAS Collaboration,

J. Phys. Conf. Ser. 396, 032030 (2012)
[19] D. Barberis et al on behalf of the ATLAS collaboration,

J. Phys. Conf. Ser. 396, 052025 (2012)
[20] M. Jiang et al, Data Driven e-Science (Springer, New York, 2011) 175-186
[21] https://github.com/apel/apel/issues/212 [accessed 2023-08-02]

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1742-6596/396/3/032011
https://doi.org/10.1088/1742-6596/513/6/062037
https://doi.org/10.1088/1742-6596/664/2/022038
https://doi.org/10.1088/1742-6596/898/5/052008
https://doi.org/10.1051/epjconf/202024507025
https://www.cncf.io/reports/kubernetes-project-journey-report/
https://cloudnativenow.com/topics/how-many-kubernetes-clusters-exist-today/
https://doi.org/10.1088/1742-6596/898/5/052002
https://doi.org/10.1051/epjconf/201921403030
https://doi.org/10.1051/epjconf/202024503032
https://doi.org/10.1088/1742-6596/396/3/032077
https://dl.acm.org/doi/10.5555/1298455.1298485
https://doi.org/10.1088/1742-6596/664/4/042042
https://doi.org/10.1051/epjconf/202024507047
https://doi.org/10.1007/s41781-021-00071-1
https://github.com/xrootd/xrootd/issues/1951
https://doi.org/10.1088/1742-6596/396/3/032030
https://doi.org/10.1088/1742-6596/396/5/052025
https://doi.org/10.1007/978-1-4419-8014-4_14
https://github.com/apel/apel/issues/212

	Introduction
	Tier 2 computing
	Harvester operations
	Cluster operations and scaling

	Tier 2 storage
	Tier 2 services
	Frontier-squid caching service
	APEL accounting service

	Summary

