

Optimization of opportunistic utilization of the
ATLAS high-level trigger farm for LHC Run 3

Ivan Glushkov1*, Chris Lee2, Alessandro di Girolamo3, Rodney Walker4 and Carlo Alberto
Gottardo3 on behalf of the ATLAS Computing Activity
1University of Texas at Arlington, Arlington, USA
2Stoney Brook University, New York, USA
3CERN, Geneva, Switzerland
4LMU, Munich, Germany

Abstract. The ATLAS Trigger and Data Acquisition (TDAQ) High Level
Trigger (HLT) computing farm contains 120 000 CPU cores. These
resources are critical for the online selection and collection of collision data
in the ATLAS experiment during LHC operation. Since 2013, during a
longer period of LHC inactivity, these resources are being used for offline
event simulation via the “Simulation at Point One” project (Sim@P1). With
the recent start of LHC Run 3 and the flat computing budget expected in the
near future, finding ways to maximize resource utilization efficiency is of
paramount importance. Recent improvements in the ATLAS software stack
can potentially allow the utilization of the Sim@P1 even during LHC
operation for the duration of the LHC inter-fill gaps. While previous papers
on the Sim@P1 project emphasized the technical implementation details,
the current contribution is presenting results of a variety of tests that led to
the optimal configuration of the job submission infrastructure which would
allow the use of Sim@P1 during LHC Run 3.

* Corresponding author: Ivan.Glushkov@cern.ch
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

Introduction
ATLAS [1] is one of the four experiments at the Large Hadron Collider (LHC) [2] at
CERN. It is located at Point 1 on the LHC ring where the High-Level Trigger (HLT)
computing farm [3] is installed amongst all other dedicated hardware. It consists of
119 744 x86 computing cores (Table 1) tailored to the needs of the ATLAS trigger system.
This system has been used since 2013 for offline ATLAS data processing in periods in
which the resources are not being used by HLT within the Simulation at Point 1
(Sim@P1) project, the details of which are described elsewhere [4, 5]. With the
approaching of Run 2 and the resource restrictions to be followed by the ATLAS
computing, we looked at optimization of the utilization of this resource which would
potentially allow us to use it as effectively as possible.

Table 1. The hardware currently available at the HLT farm.

Name CPU HT Cores RAM, GB VM cores Nodes

AS-2124BT 2 x AMD EPYC 7302 16 64 125 60 1216

S2600TPR Xeon E5-2660 v4 @
2.00GHz

56 62 52 440

S2600KPR
Xeon E5-2650 v4 @

2.20GHz 48 62 44 360

Sim@P1
Sim@P1 is the largest non-HPC opportunistic compute resource available to ATLAS
Distributed Computing (ADC). It has provided 6.7 billion simulated events or 15% of all
simulated events in ATLAS in 2022 as shown in Figure 1. It is limited only to Geant4
simulation [6] production due to its hardware configuration limitation, specifically the
RAM available per slot, which is dictated by the needs of the HLT system. With the flat
budget that ATLAS computing is being faced with in foreseeable future, in this work we
are looking into the optimizations needed to run this resource not only – as we do now -
during longer LHC stops (long shutdowns, technical stops, machine development breaks)
but also during the operation of LHC in the time between fills (Inter Fill Time, IFT) when
the HLT farm is not needed. This requires looking at every step of starting the resources,
feeding them with the proper workload and stopping them as a potential source of delay
or bottleneck for getting maximum output in each IFT.

Figure 1. Simulated events in 2022 at ATLAS. Sim@P1 is the second most significant
contributor with 15% or 6.7 billion events.

Operational Sequence
The sequence of switching from HLT operation to Sim@P1 processing and producing
simulated events is defined by the following steps:

1. HLT shifter decides when the resources can be handed to Sim@P1. This is a
decision based on the LHC and ATLAS experiment’s immediate operational
plans. In the case of planned intervention or technical stop - this is a trivial
step. In the case of nominal LHC operation, one cannot predict after the end
of an LHC fill, when the next LHC fill will start and the HLT farm resources
would need to be switched back. One of the questions that this work is trying
to answer is what is the minimal IFT for which useful events might be
produced if the resources are being switched to Sim@P1 mode. While the
switch is a complicated process it is simplified down to a simple web interface
described in details in Ref. [7]. It still requires a manual intervention.

2. After the resources are switched to Sim@P1 mode Puppet is being run on all
nodes in order to configure the worker nodes (WN) and add them to an
HTCondor pool. While details on the initialization were discussed in a
previous CHEP contribution [5], the important feature for this study is that
Puppet runs on different machines are run at random times in order not to
saturate the network. Additionally, in every one hour, Puppet runs are
paused for five minutes to avoid network congestion for other, higher
priority services on the Point 1 network.

3. Once the first WNs start appearing in the HTCondor pool, a dedicated
instance of the ATLAS pilot submission system Harvester [8] can start
submitting jobs. How fast Harvester can submit jobs in the burst operational
mode when Sim@P1 comes online depends on the rate at which it gets jobs
from the ATLAS workflow management system (WFMS), the rate at which
HTCondor can consume them, the hardware resources of the node hosting
the service as well as on the configuration values of the service.

4. The workload distribution at ATLAS is handled by PanDA [9]. PanDA should
tell Harvester that there is a job to be run at that particular resource. The
main delay that can come from PanDA, provided there are matching
workloads available in the system would come from the brokerage process.

The brokerage process that serves processing loads to up to 1´106 computing
cores and optimizes the process based on the changes in the stakeholders of
the system. Sudden changes like the appearance of 100k compute cores in
the system takes some time to be fully utilized. To overcome this feature, a
specific parameter per compute resource has been introduced which allows
to define a fixed number of jobs that will be queued no matter if the resource
is currently available or not. This feature is useful for fast filling of burst
resources like Sim@P1, but it is a problem for workflows which can be stuck
queued there for hours in case the resource is not available for a long time.

5. There should be matching workloads available in the system. Due to the
limitations of the Sim@P1 resource, not only we can run only simulation,
but also not every simulation would be brokered there. The best solution to
ensure fast filling of the resource would be to have a dedicated, low priority
simulation submitted and pinned to Sim@P1.

Optimizations

1.1 Conditions

Since the computing resources used in this work are usually needed for the HLT during
LHC operation and in the rest of the time they are vital for ATLAS simulation data
production, there is rarely time to perform tests and optimization of the system. We have
used such an occasion in the period of 6th to 20th in September 2022, during an LHC
technical stop and a temporary low of simulation requests from ATLAS when we have
managed to perform all tests and optimizations described below. Only 98.1k cores were
available for these tests, but the results are easily extendable to the full size of the
resource.

1.2 Step 1: WFMS

There are only a limited number of jobs that can be run on Sim@P1 and as it is visible
from Figure 2(a), if left to the WFMS alone, the resource could be filled fully – in some
cases, depending on the current jobs mix and input data location in the system - only
after a couple of hours. To ensure consistency and comparability of all results we needed
a large sample of similar standard simulation jobs. Thus, we have used one large standard
pp interaction FastSim [9] simulated sample. To achieve the same effect in production,
we need to ensure a constant flow of low priority FastSim workload available in the
system and assigned to Sim@P1.

Figure 2. Speed-up of filling with jobs from WFMS at resource switching from HLT to Sim@P1.
The top solid line represents the number of cores available for the Sim@P1 workload. The filled
area represents the number of processes actually running on the resources. a) Filling of resources
with time without any optimization. The delay between the two is due to the lack of workload in
the WFMS with resource requirements matching the resources available at Sim@P1. b) Filling of
resources with time using dedicated workflow and 16 core jobs. The rate at which the resources
are being filled with jobs is lower than the rate with which new resources are being added to the
system. Note the difference in timescales between a) and b)

1.3 Step 2: Number of cores per job

In order to try to fill the resources as fast as we are getting them and minimize the effect
observed on Figure 2(a) without creating additional bottlenecks in the submission
infrastructure, a test was performed where each job was run at 44 cores (Figure 3). The
maximum number of cores that can be used on every VM at Sim@P1 was set to be 44. As
visible from Figure 3, the bottleneck for fast filling of the resource becomes the switching
of the resources to Sim@P1 mode which is handled by Puppet.

Figure 3. Filling Sim@P1 with 44-core jobs. The top solid line represents the number

of cores available for the Sim@P1 workload. The filled area represents the number of
processes actually running on the resources. The plateau of the top line comes from the
current Puppet configuration discussed in the Operational Sequence section. The dotted
arrow indicates the direction of the increase in the number of jobs if the inclination was
limited by the job submission infrastructure. The full arrows denote irreducible job
initialization time which is approximately 10 minutes.

(a)

(b)

1.4 Step 3: Puppet

We have tested the influence of the Puppet run on the start-up time of the system and
by forcing Puppet to run on VM creation time. While we have managed to get a speed-
up of up to 8 times on start-up times, Puppet managed to saturate the network which
resulted in disruption of operations of the TDAQ monitoring system and other vital
systems at Point 1. Thus, this mode of operation is highly unlikely before achieving a
detailed understanding of the effect of other systems.
A side effect that was observed throughout the tests and which is visible on Figure 4(b)
is the dip of the filled area. This is because the jobs with which the test was performed
were very similar in length and starting a new job in the place of the old one requires the
usual initialization time of 10 minutes in which only one core of the multi-core job is
being used. This “feature” does not exist in production since there we run a mixture of
jobs with random lengths ending and starting at random times.

Figure 4. Speed-up of the resource switching from HLT to Sim@P1 mode. The top
solid line represents the number of cores available for the Sim@P1 workload. The filled
area represents the number of processes actually running at Sim@P1. a) Current
configuration: A puppet run is triggered at random nodes at random times. The resource
switching rate is approximately 1.5k slots/min. b) Proposed configuration: Puppet run is
triggered at the moment at which the resources are switched from HLT to Sim@P1
operation. The resource switching rate is approximately 12k slots/min.

1.5 Step 5: Core number variation effects

From pure efficiency of resource utilization, the best results we get with the 8-core jobs
– we get 90% of the resources being used (Fig. 5a) and with CPU / wall clock efficiency
of 94% (Fig. 5b). Running with such configuration results in jobs with an average
duration of 175 min (Fig. 5c) with tails up to 272 min (Fig. 5d). On the other extreme, if
we go for jobs with 52 cores, we get very short jobs (34 mins, Fig. 5c) but with filling
efficiency of 75% (Fig. 5a) and CPU / wall clock efficiency of 76%. Since in operational
conditions, we cannot know in advance what would be the length of the current IFT, the
optimal setting would be to start with high core count jobs and as time progresses
gradually switch to lower count but higher efficiency jobs.

(a)

(b)

Figure 5. Effect of variation of number of cores per job on a set of jobs. a) Percentage of
cores available for Sim@P1 used for workflow processing b) Job efficiency calculated as
the ratio between computing time times the number of cores over wall clock time. c)
Average wall clock time duration of jobs. d) Wall clock time job duration per CPU model.

Conclusions
In this work, a first set of operational parameters’ optimization tests were performed at
Sim@P1. A set of parameters is being proposed that would allow the production of
simulated events in IFT as short as 1 hour. Higher order optimizations are possible, but
they would require further testing. The settings proposed are:

• Dedicated to Sim@P1 low-priority FastSim data samples

• A variety of samples ensures different job lengths

• Constantly queued jobs from the WFMS

• The resource should be filled simultaneously with 8-core and 44-core jobs

• Puppet run should be forced at switching time from HLT to Sim@P1 operation

References
1. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,

JINST 3, S08003 (2008) https://doi.org/10.1088/1748-0221/3/08/S08003
2. L. Evans, P. Bryant, LHC Machine, JINST 3 S08001 (2008)

https://doi.org/10.1088/1748-0221/3/08/S08001

(a)

(b)

(c)

(d)

3. ATLAS Collaboration, Technical Design Report for the Phase-I Upgrade of the
ATLAS TDAQ System, (2013) 120-122, https://cds.cern.ch/record/1602235

4. S. Ballestrero et al., Design and Performance of the Virtualization Platform for Offline
computing on the ATLAS TDAQ Farm, J. Phys.: Conf. Ser. 513 (2014) 032011,
http://doi.org/10.1088/1742-6596/513/3/032011

5. F. Berghaus, ATLAS Sim@P1 upgrades during long shutdown two, EPJ Web Conf.
245 (2020) 07044, https://doi.org/10.1051/epjconf/202024507044

6. S. Agosyinelli, GEANT4—a simulation toolkit, NIM A, 506 (2003) 250-303,
https://doi.org/10.1016/S0168-9002(03)01368-8

7. S. Ballestrero et al., Evolution and experience with the ATLAS Simulation at Point1
Project, J. Phys.: Conf. Ser. 898 (2017) 082012, https://doi.org/10.1088/1742-
6596/898/8/082012

8. T. Maeno et al. on behalf of the ATLAS Collaboration, Harvester: an edge service
harvesting heterogeneous resources at ATLAS, EPJ, 214, (2019) 03030
https://doi.org/10.1051/epjconf/201921403030

9. F H Barreiro Megano et al. On behalf of the ATLAS Collaboration, PanDA for ATLAS
distributed computing in the next decade, J. Phys.: Conf. Ser. 898 (2017) 052002,
http://doi.org/10.1088/1742-6596/898/5/052002

10. ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70
(2010) 823-874, https://doi.org/10.1140/epjc/s10052-010-1429-9

11. ATLAS Collaboration, AtlFast3: The Next Generation of Fast Simulation in ATLAS,
Comput. Softw. Big Sci. 6 (2022) 1, https://doi.org/10.1007/s41781-021-00079-7

