
Implementation of New Security Features in CMSWEB Ku-
bernetes Cluster at CERN

Aamir Ali1,∗, Muhammad Imran2,∗∗, Valentin Kuznetsov3,∗∗∗, Spyridon Trigazis1,∗∗∗∗,
Aroosha Pervaiz2,†, Andreas Pfeiffer1,‡, and Marco Mascheroni4,for CMS Collaboration §

1CERN, Geneva, Switzerland.
2National Centre for Physics, Islamabad, Pakistan.
3Cornell University, USA.
4University of California San Diego, USA.

Abstract. The CMSWEB cluster is pivotal to the activities of the Compact
Muon Solenoid (CMS) experiment, as it hosts critical services required for the
operational needs of the CMS experiment. The security of these services and the
corresponding data is crucial to CMS. Any malicious attack can compromise the
availability of our services. Therefore, it is important to construct a robust se-
curity infrastructure. In this work, we discuss new security features introduced
to the CMSWEB Kubernetes (“k8s”) cluster. The new features include the im-
plementation of network policies, deployment of Open Policy Agent (OPA),
enforcement of OPA policies, and the integration of Vault. The network poli-
cies act as an inside-the-cluster firewall to limit the network communication
between the pods to the minimum necessary, and its dynamic nature allows
us to work with microservices. The OPA validates the objects against some
custom-defined policies during create, update, and delete operations to further
enhance security. Without recompiling or changing the configuration of the Ku-
bernetes API server, it can apply customized policies on Kubernetes objects and
their audit functionality enabling us to detect pre-existing conflicts and issues.
Although Kubernetes incorporates the concepts of secrets, they are only base64
encoded and are not dynamically configured. This is where Vault comes into
play: Vault dynamically secures, stores, and tightly controls access to sensitive
data. This way, the secret information is encrypted, secured, and centralized,
making it more scalable and easier to manage. Thus, the implementation of
these three security features corroborate the enhanced security and reliability of
the CMSWEB Kubernetes infrastructure.

1 Introduction
The CMS experiment[1, 2] simulates, reconstructs, and analyzes the data collected during
collision runs by running hundreds of thousands of jobs on its distributed computing system.
∗e-mail: aamir.ali@cern.ch
∗∗e-mail: muhammad.imran@ncp.edu.pk
∗∗∗e-mail: vkuznet@protonmail.com
∗∗∗∗e-mail: Spyridon.Trigazis@cern.ch
†e-mail: aroosha.pervaiz@cern.ch
‡e-mail: andreas.pfeiffer@cern.ch
§e-mail: marco.mascheroni@cern.ch

Essential CMS central services that handle CMS data administration, data discovery, and var-
ious data bookkeeping activities are hosted on a separate cluster called CMSWEB. To reduce
the release upgrade cycle and complete end-to-end deployment procedures for CMSWEB
services, CMS migrated its infrastructure [3] to a containerized solution based on Docker [4]
orchestrated with Kubernetes [5]. With this approach, CMSWEB not only unified deploy-
ment procedures and reduced the release upgrade cycle but also reduced operational costs
significantly.

Security in a Kubernetes cluster is of paramount importance as it safeguards against data
breaches, unauthorized access, and potential downtime. Kubernetes manages complex con-
tainerized applications, making it a high-value target for attackers. A secure Kubernetes
cluster ensures the integrity, confidentiality, and availability of applications and data. It in-
volves strategies like role-based access control (RBAC), network policies, container image
scanning, and secrets management. Neglecting security can lead to serious consequences,
including data leaks or loss, service disruptions, and reputational damage. Therefore, pri-
oritizing security in a Kubernetes cluster is essential to maintain trust, compliance, and the
overall health of your containerized infrastructure.

To enhance the security of the CMSWEB k8s cluster, we incorporated some new security
features. The first feature is the implementation of network policies. The network policies in
Kubernetes are a set of rules that control the communication between pods within a cluster.
They define how pods can communicate with each other and with external resources based
on IP addresses, ports, and labels. Network policies help enhance security by specifying
which network traffic is allowed or denied, allowing for fine-grained control over pod-to-pod
communication. The second feature is incorporation of Open Policy Agent (OPA) Gatekeeper
policies. This feature allows us to enforce policies and constraints on Kubernetes resources,
such as pods and deployments, by defining custom policies using Rego, a policy language.
These policies can be used to ensure compliance, security, and best practices within Ku-
bernetes cluster, providing a way to validate and control the configuration and behavior of
resources. The third feature is the integration of Vault in our cluster. Vault is crucial for
ensuring the security of sensitive data, such as API keys, passwords, and encryption keys,
in modern IT infrastructures. It provides a centralized and secure way to store, access, and
manage these secrets, enforcing access control, auditing, and rotation policies.

The rest of this paper is organized as follows: Section 2 gives an overview of network
policies and describes how these policies have been implemented. Section 3 introduces Open
Policy Agent and describes how it is used to implement fine-grained control over user re-
quests. Section 4 gives a brief introduction to Vault and how it has been used to provide
secret management service for CMSWEB cluster. Finally, we conclude in Section 5.

2 Network Policies

In this section, we give a brief overview of network policies and how we implemented these
policies in the context of CMSWEB k8s clusters. Network traffic is governed by a set of
rules known as network policy. A network policy [6] in Kubernetes enables the administrator
to manage traffic flow at the level of the IP address, port and labels. It is an application-
centric construct that enables determining the range of network entities with which a pod may
communicate. Combining the three identifiers—other pods that are allowed, namespaces that
are allowed, and IP blocks that are allowed—identifies the entities that a pod can connect
with. It is applied to a connection with a pod to either incoming or outgoing or both types
of connections and is not relevant to other connections. By default, Kubernetes does not
restrict traffic between pods running inside the cluster. So, if one pod is compromised, all

Namespace: auth

Namespace: crab

auth-proxy-server

✔

scitokens-proxy-server x509-proxy-server

crabserver

Allow Ingress Traffic

Figure 1. Network policy of crab namespace in CMSWEB Test environment

pods are potentially compromised. Therefore, a network policy must be in place to avoid
such circumstances.

2.1 Implementation

The CMSWEB cluster uses Calico as a network plugin to k8s that supports network policy
enforcement. There are two types of network policies based on the type of traffic they control;
Ingress controls the incoming traffic while Egress controls the outgoing traffic [6].

CMSWEB currently has 3 different environments, test, pre-production, and production
environment. As far as the backend is concerned, all the services are the same for all 3 envi-
ronments but there are some minor differences in the frontend of these environments. In the
test environment, there are 3 services; auth-proxy-server, scitokens-proxy-server, and x509-
proxy-server. In the pre-production and production environment, there is only one service;
frontend, and nginx-ingress respectively.

Fig 1 shows an example of a network policy from the test environment. The crabserver
is a backend service deployed in its own namespace crab. It allows ingress traffic from all
3 services in auth namespace. All the traffic from other namespaces and even other services
from auth namespace is blocked, as is outgoing traffic. Similar policies were implemented in
the pre-production and production environment with the frontend service. In short, backend
services will only accept traffic from frontend services etc.

Kubernetes

API Server

AuthN RBAC Admission
Controller(s)

Persistence to
etcd

<webhooks>

GatekeeperOPARegoPolicies

$ kubectl

AdmissionReview AdmissionResponse

Evaluate Policy (Deny/Allow)
Get Policies

Report Compliance

Figure 2. Workflow of Request when OPA is in place

3 Open Policy Agent (OPA)

This section gives a brief insight on OPA gatekeeper policies and how we incorporated these
polices in CMSWEB k8s cluster. OPA [7] is an open-source general-purpose policy engine
which allows consistent, context-aware policy enforcement throughout the entire stack. It
separates the formulation of policy from its implementation. OPA offers a high-level declar-
ative language ("Rego") that makes it possible to describe the policy as code as well as
straightforward APIs to remove the burden of making policy decisions from the software.
The software asks OPA and provides structured data (for example, JSON) as input when
making choices about policies. OPA accepts input of any structured data.

In the Kubernetes cluster, when we perform any create, update, and delete operations
on objects, the admission controllers [8] enforce policies. Through the use of admission
controller webhooks, Kubernetes enables the decoupling of policy decisions from the inner
workings of the API Server. In Kubernetes, the admission controllers are essential for en-
forcing policies. Incoming objects can also be altered by admission controllers. OPA can
be deployed as validating admission controller. Since policy decisions can be any arbitrary
structured data, they can also be used as a modifying admission controller. A customized
project called OPA Gatekeeper [9] offers initial interaction between OPA and Kubernetes.
In addition to simple OPA, Gatekeeper also provides Audit functionality, Native Kubernetes
custom resource definitions (CRDs) for extending the policy library, an extensible, parame-
terized policy library, and Native Kubernetes CRDs for instantiating the policy library.

To avoid the hassle of learning a new language and programming each policy individually,
a community-owned collection of Constraint Templates and Constraints is available at [10].
We have used some of the Constraint Templates from this library. A brief description of some
policies is given in table 1;

The Kubernetes package manager Helm [11] makes it simpler to deploy, upgrade, and roll
back Kubernetes resources by reducing the procedures to a single CLI command. A collec-
tion of files defining k8s resources, a chart, is the package format used by Helm. Additionally,
Helm enables us to package all of the relevant Kubernetes resources. Thus, packaging, dis-
tributing, downloading, and installing these Helm charts is made simple. We created a helm
chart for OPA Policies using the constraint templates and related constraints. OPA policies
pack all the constraint template library and its constraints as dependencies chart.

Fig 3 shows the procedure to deploy the OPA Policies helm chart from the official CERN
registry [12]. Users add the CERN registry as a repository to helm so it can search and

Policy Description
Allowed Repos Requires container images to begin with a string from the

specified list.
Container Limits Requires that containers have established memory and

CPU limits, and that limitation be kept within the des-
ignated maximum values.

Container Requests Requires that containers have their memory and CPU re-
quests set, as well as that requests, stay under the permit-
ted upper limits.

Container Resource Ratios Restricts the maximum ratio of container resource limits
to requests.

Container Resources Requires containers to have defined resources set.
Disallow Anonymous Prohibits assigning ClusterRole and Role resources to the

system:unauthenticated group and system:anonymous
user.

Replica Limits Requires that objects (Deployments, ReplicaSets, etc.)
with the property "spec.replicas" indicate the number of
replicas within specified ranges.

Required Probes Requires the readiness and/or liveness probes to be
present in the Pods.

Capabilities Controls Linux capabilities on containers. Corresponds
to the ’allowedCapabilities’ and ’requiredDropCapabili-
ties’ fields in a PodSecurityPolicy

Host Namespaces Prevents pod containers from sharing host PID and IPC
namespaces. Corresponds to the parameters "hostPID"
and "hostIPC" in a pod security policy.

Table 1. Description of OPA Policies

CERN
Registry

Uses

D
ow

nload

Kubernetes Cluster

Deploy

Register Repo

Install Chart

isEnabled:
 allowedrepos: true
 replicalimits: true
 capabilities: false

values.yaml

Figure 3. Deployment of OPA policies with Helm

install charts from that repository. The user can install the helm chart using helm CLI, helm
downloads the chart from the CERN registry, and deploys it to Kubernetes Cluster. During

Application Pod

pod

Application Container

/vault/secrets

Vault Agent Sidecar Container

Vault Agent Init Container

sa

Vault Server

Secret Engine

Policy

Kubernetes Auth

Vault Token

Vault Token

Secret

Service Account

Figure 4. Working of Vault when Integrated with Kubernetes

the deployment procedure, helm uses an optional values.yaml file if the user passes it as an
argument.

The OPA Gatekeeper adds another layer of security. We have configured it to only use
the CMSWEB repository to deploy images so nobody can (accidentally) deploy a malicious
image. Limiting the number of replicas as well as limiting the resources a pod can use further
prevents unfavorable conditions. Requiring readiness and liveness probes makes the admin
responsible to ensure the reliability of the service.

4 Vault

In this section, we discuss the security of k8s secrets and introduce the integration of Vault in
the CMSWEB k8s clusters. The Vault by HashiCorp [13] is an identity-based secrets and en-
cryption management system. The Vault tokens, passwords, certificates, and encryption keys
are securely stored and access to them is strictly regulated to protect sensitive data. Before
granting users, machines, or applications any access to secrets or sensitive data, it verifies
and authorizes the clients (users, apps, and machines). Numerous secret engines that either
encrypt, store encrypted data, or produce dynamic secrets are supported by Vault. It also sup-
ports various authentication engines that provide several methods for logging into Vault. The
secret storage and authentication methods added frequently for a variety of situations make
Vault extensible.

In the CMSWEB cluster, we deployed Vault using the helm chart provided by HashiCorp
with custom configurations. Vault is deployed as a stand-alone server inside a pod in the
vault namespace. The storage is statically created from OpenStack to keep data in case of
accidental removal of the Vault server. It’s initialized and unsealed manually, and the Vault
root token has been removed from the Vault CLI for security reasons. Kubernetes is then
configured as the authenticator. For secrets in CMSWEB, an encryption engine kv-v2 is
enabled at path cmsweb. We used HashiCorp’s Agent Injector in the CMSWEB cluster as
their CSI Provider doesn’t provide secret templating, which we require. The working of the
agent injector is shown in Fig. 4. A Vault Agent container that renders Vault secrets to a
shared memory volume is added to the pod specs by the Vault Sidecar Agent Injector using
the sidecar pattern. Containers in the pod can then consume Vault secrets without being Vault-

./create_secrets.sh

Files in Vault Pod

namespace_name
service_name

path_to_directory

Copy files in vault pod

Secrets in
Database/Storage

Read Policy Created

Create Secrets using Files

Create read policy in vault

Role Created

Create Role and bind to
Service Account

Service Deployed

Deploy service with
required Annotations

vault kv put /cmsweb/reqmgr2-secrets
config=@config.py

vault policy write reqmgr2-policy policy.txt

path "cmsweb/data/reqmgr2-secret" {
 capabilities = ["read"]
}

policy.txt

vault write auth/kubernetes/role/reqmgr2-role \
 bound_service_account_names=reqmgr2-sa \
 bound_service_account_namespaces=default \
 policies=reqmgr2-policy \
 ttl=24h

vault.hashicorp.com/agent-inject: 'true'
vault.hashicorp.com/role: 'reqmgr2-role'
vault.hashicorp.com/agent-inject-secret-reqmgr-
secret.txt: 'cmsweb/data/reqmgr2-secret'

annotations

Figure 5. Workflow of Vault Script

aware by rendering secrets to a shared volume. A Kubernetes mutating webhook controller
serves as the injector. Only if there are annotations in the request, the controller intercepts
pod events and applies modifications to the pod Fig 4.

Creating secrets in the Vault gets more complicated when secrets need to be created from
files. To create secrets in CMSWEB, we have created a script. The worflow of the script
is shown in 5. The script requires 3 arguments: the namespace, service, and path to the
directory that contains files. It copies files into the vault pod so it’s accessible by the Vault
CLI. Then it creates a secret using the service name and appending it with "-secrets". The
secret is required to be a key-value pair, so names of files are used as keys and content as
values. The script creates a policy that allows reading the secret. Finally, the script creates a
role to bind policy with the service account. After running the script, the user is required to
add annotations to the service pods for the Vault Agent Injector.

Adding Vault to the CMSWEB cluster brought on multiple benefits to the cluster. Au-
thorization of the service before accessing a secret is the more prominent one, though it also
decouples secrets from services that make services scalable. It also makes secret management
centralized and easy. The audit functionality of Vault helps to find possible anomalies. Vault
also allows security policies like "a secret can only be accessed once a day" and others so we
can configure policies according to our requirements in the future.

5 Conclusion

In this paper, we presented work related to the addition of new security features to the CM-
SWEB Kubernetes cluster. These include enforcement of network policies, the deployment
of OPA Gatekeeper policies with custom helm charts and the deployment of Vault to manage
secrets.

Network policies are in-house guards against code vulnerabilities. By default, Kubernetes
allows every pod to communicate with every other pod in the cluster, so if one pod is com-
promised, all pods have to be considered as being compromised. With the network policies in
place, even if a malicious actor compromises one service, they won’t be able to compromise
another service. This also prevents the propagation of any sort of virus or ransomware.

OPA Gatekeeper policies further ensures that nobody can trick the system as they im-
plement fine-grained control over different activities that is not possible otherwise. Even if
somebody gets access to the cluster somehow, it won’t be easy to install any payload or do
any malicious activity as long as OPA Gatekeeper is in place. This also prevents unintentional
and unfavorable activity in the cluster. The OPA Gatekeeper enables in-depth control over
the environment, policies, and activities.

Vault encrypts the secrets and tightly controls access to the secrets so a user, machine,
or service has to authorize itself first before accessing the secrets. This way, the secret is
accessible to the only service that is authorized to view it. Also, the secrets and sensitive
information are decoupled from the cluster, making the system scalable and allows the same
secret to be accessible to more than one service, simplifying the management of the secrets.

References

[1] CMS-Collaboration, S. Chatrchyan, G. Hmayakyan, V. Khachatryan, A. Sirunyan,
W. Adam, T. Bauer, T. Bergauer, H. Bergauer, M. Dragicevic et al., JInst 3, S08004
(2008)

[2] C. Collaboration et al., arXiv preprint arXiv:2309.05466 (2023)
[3] M. Imran, V. Kuznetsov, K.M. Dziedziniewicz-Wojcik, A. Pfeiffer, P. Paparrigopoulos,

S. Trigazis, T. Tedeschi, D. Ciangottini, Cluster Computing 24, 3085 (2021)
[4] B.B. Rad, H.J. Bhatti, M. Ahmadi, International Journal of Computer Science and Net-

work Security (IJCSNS) 17, 228 (2017)
[5] M. Luksa, Kubernetes in action (Simon and Schuster, 2017)
[6] Network Policies in Kubernetes, https://kubernetes.io/docs/concepts/

services-networking/network-policies/, accessed August 20, 2023
[7] Open Policy Agent, https://www.openpolicyagent.org, accessed August 20, 2023
[8] A guide to kubernetes admission controllers, https://kubernetes.io/blog/2019/03/21/

a-guide-to-kubernetes-admission-controllers/, accessed August 20, 2023
[9] OPA Gatekeeper, https://open-policy-agent.github.io/gatekeeper/website/docs/, ac-

cessed August 20, 2023
[10] The OPA gatekeeper policy library, https://github.com/open-policy-agent/

gatekeeper-library, accessed August 20, 2023
[11] Helm, https://helm.sh/, accessed August 20, 2023
[12] OPA Policies Helm Chart hosted at CERN registry, https://registry.cern.ch/harbor/

projects/1771/helm-charts, accessed August 20, 2023
[13] Vault, https://www.vaultproject.io/, accessed August 20, 2023

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://www.openpolicyagent.org
https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://github.com/open-policy-agent/gatekeeper-library
https://github.com/open-policy-agent/gatekeeper-library
https://helm.sh/
https://registry.cern.ch/harbor/projects/1771/helm-charts
https://registry.cern.ch/harbor/projects/1771/helm-charts
https://www.vaultproject.io/

	Introduction
	Network Policies
	Implementation

	Open Policy Agent (OPA)
	Vault
	Conclusion

