
Event Generator Tuning Incorporating Systematic Un-
certainty

Jaffae Schroff1,∗ and Xiangyang Ju2,∗∗

1Physics Division, University of California, Berkeley, CA 94720
2Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract. Event generators play an important role in all physics pro-
grams at the Large Hadron Collider and beyond. Dedicated efforts are
required to tune the parameters of event generators to accurately de-
scribe data. There are many tuning methods ranging from expert-based
manual tuning to surrogate function-based semi-automatic tuning, to
machine learning-based re-weighting. Although they scale differently
with the number of generator parameters and the number of experi-
mental observables, these methods are effective in finding optimal gen-
erator parameters. However, none of these tuning methods includes the
Monte Carlo (MC) systematic uncertainties. That makes the tuning re-
sults sensitive to systematic variations. In this work, we introduce a
novel method to incorporate the MC systematic uncertainties into the
tuning procedure and to quantitatively evaluate uncertainties associ-
ated with the tuned parameters. Tested with a dummy example, the
method results in a χ2 distribution that is centered around one, the
optimal generator parameters are closer to the true parameters, and
the estimated uncertainties are more accurate.

1 Introduction

General-purpose event generators, like Pythia 8 [1], are widely used in High Energy
Physics for event generation and physics simulations. They often contain many pa-
rameters that must be tuned so that the generated distributions match the data.
Dedicated tuning campaigns were launched by the ATLAS and CMS experiments to
tune these event generators for the Large Hadron Collider (LHC).

The tuning method evolved from manual tuning to automated tuning. In the be-
ginning, the tuning was performed by domain experts based on their sense of physics
and goodness of fit [2]. Later on, the software, Professor [3], made the tuning au-
tomated and more objective. It first optimizes a surrogate function that models the
relationship between generator parameters and experimental variables (inner-loop op-
timization), and then optimizes a χ2 function that measures the differences between
simulated data and experimental data (outer-loop optimization). Recently, Appren-
tice [4], a purely Python-based tool, was developed to leverage High-Performance
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Computing and introduced rational approximation as an alternative surrogate func-
tion.

However, the Monte Carlo (MC) systematic uncertainties are either ignored or
artificially compensated. Ref. [2] artificially introduced a 5% uncertainty when cal-
culating the χ2 function for experimental histograms so that the χ2 is not too large,
while Professor and Apprentices ignored MC uncertainties. Because of the absence
of MC uncertainties, these tunings are often sensitive to systematic variations. For
example, the latest ATLAS tuning [5] finds that tuning with different parton distri-
bution functions (PDFs) results in different tuned parameters.

Two major sources of MC systematic uncertainties exist: Quantum chromody-
namics (QCD) scale and parton distribution functions (PDF). The QCD scale uncer-
tainties stem from the choice of factorize and renormalization QCD scales, while the
PDF uncertainties are from either the PDF sets themselves or the differences among
PDF sets.

The developments of the Les Houches (LHE) 3 data format [6, 7] automate the
estimation of MC systematic uncertainties, thanks to the multiple event weights stored
in LHE 3 files. We propose to improve the current MC tuning procedure by taking into
account these theoretical uncertainties and estimating the parameter uncertainties
based on the χ2 distribution.

2 Current MC tuning procedure

The current MC tuning procedure is a two-step optimization process, detailed in
Refs [3, 4]. In the inner loop, a surrogate function is optimized to model the re-
lationship between the generator parameters and the experimental observables. In
the outer loop, the generator parameters are optimized to minimize a χ2 function.
We will describe the two steps and refer to it as MC-Tune-NoError in the following
sections.

2.1 Inner loop optimization

To illustrate the method, we assume there are n generator parameters and ` generator
parameters are sampled for simulation. The inner loop optimization is performed for
each bin of each experimental observable. Without a loss of generality, we focus on
one bin and use the quadratic approximation:
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whereM(p) is the vector of model predictions corresponding to the parameters p and
a
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i(j) are the coefficients of the surrogate function. Equation 1 can be written in a

matrix form:
f(p) = P ·A = M (3)

where P is a matrix in which column k contains the parameter variations of model
set k:
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The m = 1+n+n(n+1)/2 coefficients a(0,1,2) of the surrogate function are unknown
and determined by fitting Eq. (3) to ` simulation distributions (` ≥ m), generated
with different parameter settings.

Solving equation (3) is to minimize the loss function:

L = ||M − P ·A||2.

It can be solved by inverting the matrix ~P . Often is the case that there are more exper-
imental runs than the number of coefficients, making the equation over-determined.
Therefore, a simple matrix inversion based on singular value decomposition may not
be robust. We find adding a penalty term such as lasso or ridge helps to stabilize the
optimization process.

2.2 Outer loop optimization

After the surrogate function is optimized, the next step is to optimize the generator
parameters by minimizing the χ2 function:

χ2 =

B∑
i

[di − f(p, xi)]
2

σ2
di

where i loops over all B bins, fi(p) is the surrogate function for the i-th bin, di
is the experimental measurement, and σdi

is the uncertainty of the measurement.
Throughout the procedure, no MC uncertainties are taken into account.

3 Tuning with MC uncertainties
A straightforward method to incorporate the MC uncertainties is to use another
surrogate function g(p) to model the relationship between the generator parameters
and the MC uncertainties eMC for each bin. This surrogate function can be obtained
similarly to the one for the nominal values. Then, the χ2 function can be modified to
include the MC uncertainties:

χ2 =
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2
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+ g(p, xi)2

This method is referred to as MC-Tune-Error in the following sections.
We propose propagating the MC uncertainties to the surrogate function and in-

corporating that in the χ2 function. We minimize the following loss function to obtain
the best estimates of the surrogate function coefficients A and the covariance matrix
Σ of the coefficients:

L = ||M − P ·A||2/M2
error

where M error is the MC uncertainties associated with the event generators. The co-
variance matrix Σ of the coeffiicents of the surrogate function is then used to estimate
the surrogate function uncertainties σfi in the χ2 function:

σ2
f (p) = JΣJT

where J is the Jacobian matrix of the surrogate function. Now, we can modify the
χ2 function to take into account the MC uncertainties:

χ2 =
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This method is referred to as MC-Conv-Tune in the following sections.



Figure 1. Toy observables. The red curve labeled as "Data" is the target distribution.
Other curves, labeled as "MC" are the distributions generated by generator parameters
tuned with different methods as detailed in the text.

4 Toy data setup

We create toy data to evaluate the effectiveness of our method. We define two ob-
servables following exponential functions:

y0 = eax0+bx2
0 , y1 = eax1+bx3

1

a and b are two generator parameters that control the observable distributions. Be-
cause generator parameters are often bounded by physical constraints, we also set the
boundaries on these tuning parameters in our toy data. Specifically, a is bounded to
be [1, 2] and b to be [−1.2, 0.8]. The two toy observables are binned into histograms
with 20 bins, shown as ‘observable 1’ and ‘observable 2’ in Fig. 1.

Following the tuning procedure outlined in Section 2, we randomly sample 30
independent pairs of (a, b) with 100,000 events for each pair. We then use the 3rd-
order polynomial function as the surrogate function for all three tuning methods.

5 Results

Figure 1 compares the toy observables between the target distributions and the tuned
ones. We see that all three methods can obtain optimal generator parameters that
produce distributions that agree with the target distribution. The optimal and true
generate parameters are displayed in Fig 2. The MC-Conv-Tune finds the optimal
parameters closest to the true parameters because it takes into account the MC un-
certainties properly. Additionally, we’ve included a contour plot that shows where
the value of the objective function exceeds its minimum value by the number of de-
grees of freedom. The MC-Tune-NoError yields a very narrow contour, indicating
the estimated errors are underestimated. That confirms the findings from Ref [3],
where the authors did not use the number of degrees of freedom to estimate the er-
rors but instead used an educated guess of the threshold, see the Eigentune method
in Ref [3]. On the other hand, the MC-Tune-Error yields a very wide contour, indi-
cating the estimated errors are overestimated. This is because the observable values
and their errors should not be modeled with independent surrogate functions. The
MC-Conv-Tune yields a contour that is in between the other two methods and encom-
passes the true parameters.



Figure 2. 68% confidence level contour in the a and b plane. The solid dots are the optimal
generator parameters obtained with different methods.

Figure 3. χ2 over the number of degrees of freedom for different tuning methods obtained
with 100 trials.

To check the stability of the tuning methods, we repeat the tuning procedure 100
times. Figure 3 shows the χ2 distribution over the number of degrees of freedom.
All algorithms yield a relatively narrow width. However, the MC-Tune-Error and
MC-Tune-NoError have a slightly larger tail fraction. As inferred from Fig. 2, the
MC-Conv-Tune peaks around one, while the other two methods yield either much
larger or smaller values.

6 Conclusion

We propose a new method to incorporate the MC systematic uncertainties into the
MC tuning procedure. We evaluate the method with a toy example and find that the
method yields better optimal generator parameters and uncertainty estimations. The
method can be easily extended to include different sources of uncertainties.

MC uncertainties are often independent of the experimental uncertainties. Thanks
to recent developments of the HepData repo and the support of LHC experiments, the



LHC experiments started to report the breakdown of their measurement uncertainties
into theoretical and experimental uncertainties. Within our method, we can properly
correlate the MC uncertainties with the reported theoretical uncertainties, and un-
correlate them with the experimental uncertainties. Doing so will further improve the
error estimations.

However, this method is computationally expensive. It is much slower than the
current MC tuning procedure. We are working on optimizing the processes with
GPUs or multithreading in CPUs.

The ATLAS A14 Tune [5] made three different tunings for different PDFs due
to the intrinsic differences among these PDFs, which, however, are often treated as
systematic uncertainties associated with the PDF. It will be interesting to redo the
ATLAS tuning with our method and to check if our method helps to reduce the
tuning-related systematic uncertainties.
This work was supported through the Scientific Discovery through Advanced Computing
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