
RootInteractive tool for multidimensional statistical analy-
sis, machine learning and analytical model validation

Marian Ivanov1,∗, Marian Ivanov2,∗∗, and Giulio Eulisse2,∗∗∗

1GSI Darmstadt
2UK Bratislava
3CERN

Abstract. The ALICE experiment [1] at CERN’s LHC is specifically designed
for investigating heavy ion collisions. The upgraded ALICE accommodates
a tenfold increase in Pb–Pb luminosity and a two-order-of-magnitude surge in
minimum bias events. To address the challenges of high detector occupancy and
event pile-ups, advanced multidimensional data analysis techniques, including
machine learning (ML), are indispensable. Despite ML’s popularity, the com-
plexity of its models presents interpretation challenges, and oversimplification
in analysis often leads to inaccuracies.
Our objective was to develop RootInteractive, a tool for multidimensional sta-
tistical analysis. This tool simplifies data analysis across dimensions, visualizes
functions with uncertainties, and validates assumptions and approximations. In
RootInteractive, it is crucial to easily define the functional composition of ana-
lytical parametric and non-parametric functions, exploit symmetries, and define
multidimensional "invariant" functions and corresponding alarms.
RootInteractive [2] adopts a declarative programming paradigm, ensuring user-
friendliness for experts, students, and educators. It facilitates interactive vi-
sualization, n-dimensional histogramming/projection, and information extrac-
tion on both Python/C++ server and Javascript client. The tool supports clien-
t/server applications in Jupyter or standalone client-side applications. Through
data compression, datasets with O(107) entries and O(25) attributes can be inter-
actively analyzed in a browser with O(0.500-1 GB) size. Representative down-
sampling and reweighting/pre-aggregation enable the effective analysis of one
year of ALICE data for various purposes.

1 Introduction

RootInteractive, developed within the ALICE collaboration, is a tool for advanced multidi-
mensional interactive statistical analysis. It effectively addresses the challenges of the high
interaction rates of ALICE data taking during LHC Run 3. These challenges include for ex-
ample event pile-up, space point distortions in the Time Projection Chamber (TPC) detector
due to the accumulated space charge, electronic baseline fluctuations in the TPC, and other
distortions. A deep understanding of the detector system, MC simulations and calibration

∗e-mail: marian.ivanov@cern.ch
∗∗e-mail: marian.i@cern.ch
∗∗∗e-mail: Giulio.Eulisse@cern.ch

performance is essential for effective use of machine learning in physics analysis. Our goal
is to provide a solution that simplifies multidimensional data analysis:

• Fitting and visualizing N-dimensional functions taking into account uncertainties and bi-
ases.

• Streamline validation of assumptions, numerical evaluations and differential model com-
parisons, enabling function composition for different mathematical functions and error
propagation.

• Rapid feedback, reducing analysis time from weeks to seconds for interactive expert dis-
cussions.

• Support for multi-dimensional parametric optimization.

• User-friendly configuration options for visualisation of unbinned and binned data, interac-
tive multidimensional histograms and projections. It also allows the derivation of aggre-
gated information accessible on both server (Python/C) and client (JavaScript) platforms.

• To facilitate the creation of stand-alone client-side applications (HTML documents) with-
out the need to install additional software.

RootInteractive’s core philosophy, encapsulated in the motto "seeing is believing", em-
phasizes the importance of queries, iterative interactions, and differential comparisons in
understanding complex data. Within ALICE, RootInteractive plays a central role in expert
projects such as digital signal processing for Run 3 [3], optimization and validation of track
reconstruction for Run 2 and Run 3 [4], MC/data mapping, TPC data volume studies, and dif-
ferential quality assurance and quality control. It has also been used in the development of the
particle identification algorithms and magnetic monopole reconstruction studies (in collabo-
ration with the DUNE experiment) for high dE/dx (mean energy loss per distance traveled),
low momentum, and spallation product tracking. In summary, RootInteractive stands at the
forefront of advanced data analysis in the challenging scientific context of ALICE CERN.

The framework presented here, RootInteractive, serves as a versatile tool for interac-
tive statistical aggregation and visualisation of multidimensional data, compatible with both
ROOT[1] and native Python data frame formats such as Pandas [5] and Modin [6]. The code
provides extensive support for various ROOT data structures and classes, including TTree,
TTreeFormula, Aliases, TFormula and static Root/AliRoot functions. Work is also being
done to simplify compatibility with RDataFrame [7, 8] and awkward (PyHep) arrays [9].
One can use this framework with various data sources, including PyRoot (AliRoot/O2) data
structures. Importantly, it works seamlessly with pandas/modin alone, so one does not need
to install the ROOT package. Internally, these data structures are converted into either Bokeh
[10] CDS (ColumnDataSource) for simple scatter visualization or our own RootInteractive
CDS extension, which allows for a variety of operations with N-dimensional histograms,
projections, and aggregated data.

The content of RootInteractive includes the following main aspects:

• It provides an interactive and highly customisable visualisation solution for both non-
binned and binned data.

• It allows interactive operations such as n-dimensional histograms, projections and the ex-
traction of derived aggregated information.

• The application can be used in different configurations, e.g. as a client/server application
integrated with Jupyter and Bokeh.

• Users can use the Bokeh standalone dashboard independently as a client application, with-
out having to install software or require a stable internet connection to a server. This is

Figure 1. Example of an interactive dashboard created with the getDefaultVars function of the Root-
Interactive template. The goal of this dashboard is to compare the ALICE TPC space point distortion
estimator based on two factors: position in the detector (pad row) and rate (represented by the colour
axis). The layout of the dashboard is very versatile. It offers views for 1D, 2D and 3D aggregation, both
with and without data normalisation. These different views can be accessed via tabs so that the aggre-
gated data and the different iterations of the machine learning predictions can be easily compared. On
the snapshot you can see the 2D layout. It shows important statistical quantities such as mean, median
and root mean square (rms) for a given selection (e.g. side, magnetic field, position, etc.).

the most common way to use RootInteractive. We can include interactive dashboards as a
valuable resource in meeting agendas, for example.

• The system supports both lossy and lossless data compression, enabling efficient data trans-
fer from server to client. In typical use cases, a factor 10 is achieved.

• RootInteractive interfaces seamlessly with ROOT - RDataFrame -awkward - Pandas/Modin
tools.

• Work is underway to further simplify RDataFrame’s C syntax by using Domain-specific
language for slicing and joins (inspired by Python syntax and Pandas/Modin joins). The
Python-like syntax is translated into the C++ template functions and used as JIT or in C
macros.

This code empowers interactive visualization, histogramming, and data aggregation in
N-dimensions on the client side, facilitating advanced data analysis tasks.

2 Exploring Symmetries, Alarms, and Invariants in
Multi-Dimensional Data Analysis

In our project, we focus on the use of symmetries and invariants (within uncertainties) for
multidimensional data analysis. We optimize the handling of normalized data that includes
data-analytical model, MC-real data, data-symmetry, data-reference data, and data-machine
learning prediction across different dimensions. Data normalization leads to reduced RMS
scatter and the ability to implement alarms and outlier detection based on statistical sig-
nificance, e.g. identifying cases where (data model) exceeds Nσ or using likelihood-based
methods. These methods are actively applied in various ALICE projects and include consid-
erations of temporal invariance (e.g. referencing the data to an average run), spatial invariance

(taking into account rotational and mirror symmetry), magnetic field symmetry, comparing
the data with analytical models, evaluating different machine learning models and assessing
the smoothness of the data.

As an ALICE application example of symmetry in data and ML models, we train mod-
els where we assume symmetry and compare them to a regression or statistical aggregation
without the symmetry assumption. We do this by including or not including the variable with
the expected symmetry in the Machine learning regression or aggregation.

For example, in the case of space point distortion, the particle production is φ-symmetric,
so the space charge density in the TPC detector is also φ-symmetric, and accordingly the
E-vectors of the distortion should also have the same symmetry. A deviation from symmetry
either indicates a problem, or the symmetry is broken by an additional effect that we have to
take into account (e.g. a non-φ-symmetric conversion factor from ionisation to space charge)
in correction respectively in MC simulation. After correcting (normalising over the functional
composition) for the known effects, the symmetry should be restored and data consistency can
be assessed.

3 RootInteracive - Machine learning, ML validation and data
aggregation

RootInteractive integrates external machine learning models and provides wrappers for mod-
els such as RandomForest [11] and Extreme Gradient BDT [12] to estimate local parameters
of the PDF function (which are used as estimators for the reducible and irreducible error
machine learning model). For example, in optimizing the TPC space point distortion model
developed by ALICE, we used RootInteractive to compare an external U-net model [13] with
a simpler data-driven approach using RandomForest. This involved optimizing the parame-
ters of the models and the cost functions.

RootInteractive performs interactive visualization, data aggregation and invariance vali-
dation on the client side, processing significant amount of unbinned data, typically between
O(106) and O(108) elements (rows x attributes). The upper limit depends on memory and
data transfer and is typically O(1GB) on the client side. To access even larger amount of data,
two main approaches are used: domain-specific sampling (e.g. in ALICE, it provides more
uniform momentum or particle type distribution) and pre-aggregation on the server. This
pre-aggregated or skimmed information can later be reweighted in subsequent RootInterac-
tive sessions on the client. Pre-aggregated data sources typically include local statistics such
as mean, median, count and standard deviation obtained from unbinned predictions (from
Machine learning regression). Alternatively, we aggregate data using local kernel regression
parameters tabulated on a regular mesh. In RootInteractive we use C (HistoND) and Python
libraries like Pandas [5] and Modin [6] for multidimensional operations like ’group by’ and
rolling statistics.

4 RootInteractive statistics and Machine learning wrappers

RootInteractive provides simple local statistics on the regular grid, including mean, median,
RMS, and quantiles, for model validation on the client side (see example snapshot 1).

We also introduce new features:

• Generalized kernel linear regression on the client, similar to that on the server. This uses
multi-dimensional group-by, rolling statistics, and local kernel fitting to represent smooth
functions.

• Ongoing development of client-side ML prediction using WebAssembly (wasm) [14] and
ONNX [15]. This allows us to parameterize machine learning models and define param-
eterized derived variables. For example, we can compute derivatives of machine learning
predictions, perform systematic error studies on the client side, and perform numerical
derivatives with varying input parameters of machine learning models.

• A local linear forest, which is a local linear regression with a kernel defined by a random
forest, was originally introduced in GRF (Generalised Random Forest) [16]. However, the
original implementation is very computationally intensive when it comes to predictions.
To mitigate this, we are working on a cached version that incorporates local derivatives in
the nodes, similar to the approach used in the previous ALICE software framework [17])
framework in the AliNDLocalRegression class on the fixed grid. This optimisation makes
the prediction process more efficient.

5 Interactive visualization, histogramming, and data aggregation in
N-dimensions on client

Interactive visualisation, histogram generation and N-dimensional data aggregation on the
client side are controlled by a series of Python dictionaries and arrays. These declarations
serve as inputs to the bokehDrawSA function, which can be used to create a variety of graph-
ical elements such as scatter plots and N-dimensional histograms, as well as projection statis-
tics, whether they are binned or unbinned. Essentially, these declarations define the data
sources for bokeh and allow the development of derived variables and aggregated statistics
to enrich the client-side visualization. bokehDrawSA uses declarative programming, an ap-
proach that allows developers to express computational logic without having to explicitly
script every step of the process. This methodology simplifies the programming effort because
developers only need to describe the desired program results, rather than specifying in detail
each command or step to achieve those results. In practice, the configuration of the interactive
visualization relies on six arrays/dictionaries, as shown below:

bokehDrawSA.fromArray(df,selection ,figureArray ,widgetParams ,
layout=figureLayoutDesc , tooltips=tooltips ,
parameterArray=parameterArray ,
widgetLayout=widgetLayoutDesc , sizing_mode="scale_width",
nPointRender=300,aliasArray=aliasArray ,
histogramArray=histoArray ,arrayCompression=arrayCompression)

These arrays, in particular figureArray, histogramArray, aliasArray, layout, widgetLay-
out, and parameterArray, collectively contribute to the construction and creation of interac-
tive visualizations and provide a streamlined approach to the complex display and analysis of
data. The parameter names used in the declaration directories conform to the bokeh naming
convention for graphical elements. For histogramming and statistical aggregation, we have
taken inspiration from Numpy and Pandas.

To simplify the creation of interactive visualizations, we use "predefined template func-
tions" that provide predefined configurations (dictionaries) that can later be extended in the
user’s Python code. Our main goal is to simplify the process of automatic multidimensional
differential validation, and to this end, we have developed several template functions with
parameterisable differences of function, reference function and scale function.

One of these functions, getDefaultVars, is tailored to create default variables suitable for
multidimensional data and automatic user-defined normalization. It provides configurations
such as aliasArray, variables, parameterArray, widgetParams, widgetLayoutDesc, histoArray,
figureArray and figureLayoutDesc.

Figure 2. A snapshot of a real use-case l interactive dashboard within ALICE, generated using getDe-
faultVars. This dashboard is used for comparing ALICE TPC [18] currents (IDC) and TPC tracking bias
(<DCA>) time series. The layout includes functions for 1D, 2D, and 3D aggregation, facilitating com-
parisons between aggregated data and various iterations of machine learning predictions. Additionally,
it provides local aggregated statistics. You can find a partial list of the input variables for interactive
aggregation on the right side of the snapshot (expanding select for the varZ selection)

def getDefaultVars(normalization=None, variables=None, defaultVariables={},
weights=None, multiAxis=None)

With this function, we create a predefined layout containing 1D, 2D and 3D aggregations
(a user extension must create an n-dimensional selection layout). The parameters for aggrega-
tion and normalization are based on the lists of input variables. The client-side normalization
process provides flexibility and supports different methods such as "delta," "ratio", "log ratio"
and pulls (∆/σ). In example snapshot fig. 2, the diff function is selected using multiselect
widget - difFunction.

In example above the following code for aliasArray and parameterArray was generated:

• Generated aliasArray:

[{’fields’: [’varY’, ’varYNorm’],
’name’: ’diffFunc’,
’parameters’: [’diffFuncTransform’],
’v_func’: """

if($output == null || $output.length !== varY.length){
$output = new Float64Array(varY.length)

}
if(diffFuncTransform==’diff’){
for(let i=0; i<$output.length; i++){

$output[i] = varY[i]-varYNorm[i]
}

}
else if(diffFuncTransform==’ratio’){
for(let i=0; i<$output.length; i++){

$output[i] = varY[i]/varYNorm[i]
}

}
else if(diffFuncTransform==’logRatio’){
for(let i=0; i<$output.length; i++){

$output[i] = Math.log(varY[i])/Math.log(varYNorm[i])
}

}
return $output

""" }]

• Generated parameterArray subset:

{’name’: ’diffFuncTransform’, ’value’: ’diff’, ’options’: [’diff’, ’ratio
’, ’logRatio’]},

{’name’: ’varY’, ’value’: ’dLX_neg_3000_mean_G0’, ’options’: [’
dLX_neg_3000_mean_G0’, ’
dLX_neg_3000_mean_G1’,

6 Enhancing Interactive Analysis and Code Efficiency through
Representative Down-Sampling

To enable interactive physics analysis, optimize code performance, and generate training
datasets for machine learning techniques, representative down-sampling is employed. This
process ensures a roughly flat distribution in variables of interest. In our specific physical use
case, we utilize a combination of minimum bias data and down-sampled data with a roughly
flat distribution in particle momenta, event multiplicity, and PID. Depending on the dataset,
our typical target value is O(10−2 − 10−4). This down-sampling process occurs outside of
RootInteractive.

To achieve the desired roughly flat distribution, we leverage several effective parameter-
izations with significant precision. Rather than requiring an exact distribution, weights are
typically stored for subsequent re-weighting in the RootInteractive analysis. The minimum
bias sample serves as a control mechanism for this methodology.

7 Conclusions

RootInteractive was developed as a tool that simplifies multidimensional data analysis and
allows us to effectively process data in all relevant dimensions. This tool aims to fit and vi-
sualise multidimensional functions, including uncertainties and biases, validate assumptions
and approximations, facilitate the composition of parametric and non-parametric functions,
and use symmetries to define multidimensional "invariant" functions and alarms.

RootInteractive offers functions for interactive visualization of both unbinned and binned
data, n-dimensional histogramming and projection, and extracting aggregate information,
both on the server (Python/C++) and client (JavaScript) in browser. By employing a com-
bination of lossy and lossless data compression techniques, RootInteractive allows interac-
tive analysis of datasets containing millions of entries and dozens of attributes within a web
browser, typically consuming around 0.5-1 GB of memory. Through representative down-
sampling (typically 1-0.1% of data) followed by reweighting or pre-aggregation on the server
or batch farm, it enables interactive multidimensional analysis of ALICE’s extensive month-
ly/annual statistics for calibration, reconstruction validation, quality assurance, quality con-
trol, and statistical/physical analysis.

Thanks to its versatility and ease of use, RootInteractive plays a central role in ALICE
expert projects such as digital signal processing for Run3, optimisation and validation of

reconstruction for Run2 and Run3, MC /data mapping, TPC data volume studies and differ-
ential quality assurance and quality control. It has also been used in the development of the
particle identification algorithm and in magnetic monopole reconstruction studies (in collab-
oration with the DUNE experiment) for high dE/dx (mean energy loss per distance traveled),
low momentum and spallation product tracking.

8 Future Work

Future work includes continuing efforts to streamline the C syntax of RDataFrame. This
endeavor includes the application of a domain-specific language for tasks such as slicing,
joins and rolling statistics that are inspired by the syntax of Python and the joining methods
used in Pandas/Modin. The planned approach involves the development of a Python-like
syntax that is translated into C++ template functions and used either for just-in-time (JIT)
compilation or for integration into C macros. As explained in the previous sections, there are
also extensive ongoing developments focussing on the integration of predictions for machine
learning on the client side through the integration of WebAssembly [14] and ONNX [15].

References

[1] K. Aamodt, A.A. Quintana, R. Achenbach, S. Acounis, D. Adamová, C. Adler, M. Ag-
garwal, F. Agnese, G.A. Rinella, Z. Ahammed et al., Journal of Instrumentation 3,
S08002 (2008)

[2] M.I.j. Marian Ivanov, Rootinteractive, https://github.com/miranov25/RootInteractive
(2021)

[3] J. Alme et al. (ALICE TPC) (2023), 2304.03881
[4] M. Arslandok, E. Hellbär, M. Ivanov, R.H. Münzer, J. Wiechula, Particles 5, 84 (2022)
[5] W. McKinney, Data Structures for Statistical Computing in Python, in Proceedings of

the 9th Python in Science Conference, edited by S. van der Walt, J. Millman (2010), pp.
51 – 56

[6] D. Petersohn, R. Zadeh, M. Zaharia, X. Meng, E. Smith, J.W. Kottalam, R. Liaw, A. Gh-
odsi, I. Stoica, Modin: Scale your pandas workflows by changing one line of code,
https://github.com/modin-project/modin (2019), accessed: 2023-09-04

[7] D. Piparo, P. Canal, E. Guiraud, X.V. Pla, G. Ganis, G. Amadio, A. Naumann, E. Teje-
dor, Rdataframe: Easy parallel root analysis at 100 threads, in EPJ Web of Conferences
(EDP Sciences, 2019), Vol. 214, p. 06029

[8] E. Guiraud, J. Blomer, S. Hageboeck, A. Naumann, V. Padulano, E. Tejedor, S. Wunsch,
RDataFrame enhancements for HEP analyses, in Journal of Physics: Conference Series
(IOP Publishing, 2023), Vol. 2438, p. 012116

[9] J.P. Ianna Osborne, arXiv preprint (2023), 2302.09860
[10] Bokeh Development Team, Bokeh: Python library for interactive visualization (2018),

https://bokeh.pydata.org/en/latest/

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg et al., Journal of Machine Learning Research 12,
2825 (2011)

[12] T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System, in Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (ACM, New York, NY, USA, 2016), KDD ’16, pp. 785–794, ISBN 978-1-4503-
4232-2, 11

[13] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical
image segmentation (2015), 1505.04597, 11

[14] WebAssembly Core Specification, https://www.w3.org/TR/wasm-core-2/
[15] O.R. developers, Onnx runtime, https://onnxruntime.ai/ (2021)
[16] S. Athey, J. Tibshirani, S. Wager, The Annals of Statistics 47, 1148 (2019), 1610.01271
[17] A.S. Framework, Aliroot, https://github.com/alisw/AliRoot (2021)
[18] J. Alme et al., Nuclear Instruments and Methods in Physics Research Section A: Accel-

erators, Spectrometers, Detectors and Associated Equipment 622, 316 (2010)

