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Abstract. Many current physics experiments require precision reconstruction
of low-energy particles. One example is the Mu2e experiment, which requires
reconstructing an isolated 105 MeV electron with better than 500 KeV/c mo-
mentum resolution. Mu2e uses a low-mass straw tube tracker, and a CsI crys-
tal calorimeter, to reconstruct tracks. In this paper, we present the design and
performance of a track reconstruction algorithm optimized for Mu2e’s unusual
requirements. The algorithm is based on the KinKal [1] kinematic Kalman filter
track fit package. KinKal supports multiple track parameterizations, including
one optimized for looping tracks, such as Mu2e signal tracks, and others op-
timized for straight or slightly-curved tracks, such as the high-momentum (>1
GeV/c) cosmic ray muons used to calibrate and align the Mu2e detectors. All
KinKal track parameterizations include the track origin time, to correctly model
correlations arising from measurements that couple time and space, such as the
straw drift time or the calorimeter cluster time. KinKal employs magnetic field
inhomogeneity and material effect correction algorithms with 10−4 fractional
precision. The Mu2e fit uses Artificial Neural Net functions to discriminate
background hits from signal hits, and to resolve the straw tube hit left-right am-
biguity, while iterating the extended Kalman filter. The efficiency, accuracy, and
precision of the Mu2e track reconstruction, as tested on detailed simulations of
Mu2e data, are presented.

1 Introduction

Kinematic particle fitting combines the extraction of geometric and kinematic properties of a
particle from measurements. It was developed to provide simultaneous particle identification
and momentum reconstruction in bubble chamber experiments over 50 years ago [2], and is
required for precision track reconstruction when a particle’s energy is comparable to its mass.
In a kinematic fit energy and time are intrinsic properties of the fit. A kinematic fit provides
a natural framework for coherently combining time, position, and coupled time-and-position
(such as drift cell) sensor constraints.

The Kalman filter algorithm has been used to reconstruct tracks in particle physics ex-
periments for over 30 years [3]. Most recent developments have been focused on the need
for rapid reconstruction of large volumes of multi-track events recorded by high-intensity
collider experiments. Modern Kalman filter track fits apply corrections for material effects
(energy loss and scattering) and inhomogeneous magnetic fields through transport equations.
They also provide interfaces for pattern recognition and detector calibration and alignment.
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In this paper we present KinKal [1], a kinematic Kalman filter track fitting package de-
signed for the precise reconstruction of low-momentum tracks. KinKal was developed for the
Mu2e experiment [4], which will search for the neutrino-less conversion of negative muons
into electrons and positrons. Mu2e has several unique track fitting requirements:

• Signal and physics background events consist of a single particle with momentum near the
muon mass (105 MeV/c), in the presence of large amounts of pileup detector backgrounds

• There is no a-priori constraint on the origin time of signal or physics background particles,
as they are produced from the random decay of a muon

• The origin position of signal and physics background particles is only weakly constrained
to a region 7.5 cm in diameter by 50 cm long

• The track fit must function in regions of large magnetic gradient, including fitting particles
which reverse direction

• Achieving a sensitivity of ∼ 10−16 places strong limits on the non-Gaussian tails of the
reconstructed momentum resolution

• Signal particles execute multiple loops in the tracker, requiring a track fit that accommo-
dates multiple loops for optimal fits

• In-situ calibration and alignment of the tracker requires reconstructed high-energy cosmic
ray muon tracks, best described using a traditional HEP impact-parameter based parame-
terization

• Traditional impact-parameter based helix parameterizations become degenerate describing
low-energy cosmic ray particles co-axial with the solenoid, which are required to constrain
the ’twist’ miss-alignment weak mode of the tracker

• Commissioning data for Mu2e will be taken without any magnetic field, requiring recon-
structing straight tracks for calibration, alignment, and testing

• Optimal calibration and alignment requires combining the different track types described
above, requiring a tracking algorithm that can simultaneously describe tracks with different
parameterizations

The KinKal (Kinematic Kalman) track fitting package was developed to satisfy these require-
ments. Though designed primarily to serve the needs of Mu2e, it is a standalone tracking
package that could be used in other applications requiring precision low-momentum track-
ing.

2 Overall Software Design

KinKal is divided into several libraries, each describing a particular aspect of the fit; particle
trajectories, geometry, detector descriptions, fit configuration, and the fit engine itself. A
test library defines a complete set of unit tests of all the low-level classes, as well as a high-
level test of the fit using a toy Monte Carlo and an example detector description. Detailed
sensor and material classes must be added to these base libraries to create a functional fit for
a specific experiment. These core KinKal libraries are described in detail below.

3 Kinematic Trajectory

The core class in KinKal represents the kinematic trajectory of a particle in a fixed magnetic
field. A kinematic trajectory class must implement an interface implicitly defined by the
KinKal fit. They must describe the position and momentum of a particle as a function of



absolute time, over a limited time range, defined by a set of 6 parameters. The kinematic
trajectory class must provide a complete set of derivatives of the position and momentum
relative to the parameters, the inverse of those, and the derivatives of the parameters with
respect to a change in the reference magnetic field. Additional functions giving the particle
energy, velocity, and related values, as a function of time are also required. The kinematic
trajectory class payload consists of the parameters, described below (section 4), the reference
magnetic field, and the particle mass. These last are fixed (non-parametric) members of the
class. Kinematic trajectory class objects can be losslessly converted to and from a particle
description as a position and momentum at a fixed time, with the full 6X6 covariance matrix
of those components.

A kinematic trajectory’s geometric parameters are not proscribed by KinKal. The param-
eterization must include a time t0, representing the physical time when the particle passes a
well-defined but arbitrary reference location. For example, t0 may be defined as when the
particle passes through a particular plane, or comes closest to a particular axis.

KinKal provides three fully implemented kinematic trajectory classes. The LoopHelix
class is optimized for low-momentum particles which execute multiple loops in a magnetic
field, describing the loop center, transverse radius, and longitudinal wavelength. The Central-
Helix class uses a traditional HEP high-momentum helix parameterization based on impact
parameter, directions, and inverse curvature. The KinematicLine class describes a straight
trajectory (no magnetic field), by its impact parameters and directions, plus a scalar momen-
tum value. The KinKal kinematic trajectory classes are illustrated in figure 1. A particular fit
uses exactly one kinematic trajectory class.

Figure 1. KinKal Kinematic Trajectory Parameterizations

4 Parameters and Weights

The parameteric content of a kinematic trajectory is held as a Parameter class, which com-
bines a 6-dimensional ROOT::SVector P and a 6X6 symmetric ROOT::SMatrix C for the
covariance. These classes provide very efficient implementations of 6-dimensional linear al-
gebra functions such as similarity and inversion. A Parameter object is generic and algebraic,
its physical interpretation given only through the kinematic trajectory which owns it.



Parameter objects may be losslessly transformed into Weight objects, with the identical
payload as a Parameter, according to the definition:

γ ≡ C−1 , β ≡ γP (1)

where β and γ are the SVector and symmetric SMatrix of the Weight, respectively.

5 Geometry

The KinKal Geometry library provides classes describing simple geometric objects that are
used to implement the detector representation classes described below. It also includes classes
that compute geometric relations between these and the kinematic trajectory classes.

The Geometry library provides classes representing points and line segments in space,
and classes for calculating the position and time of closest approach (TPOCA) of a kinematic
trajectory to those. The TPOCA class provides full analytic derivatives of the change in
TPOCA against the kinematic trajectory parameters.

The Geometry library also provides classes representing simple bounded surfaces, such
as segments of planes, cylinders, and cones. It also provides an Intersection class that can
find the time and position of a geometric intersection of a kinematic trajectory with a surface
segment.

6 Detector Representation

The KinKal fit is driven off input objects representing detector measurements (hits), which
constrain the fit, and material interactions, which degrade and randomize the fit. Hit and ma-
terial interaction classes are experiment-dependent and must be implemented by experiments
according to their physical apparatus. To be used in the KinKal fit the hit class must provide
a function computing its constraint (parameter difference vector and weight matrix) with re-
spect to a reference kinematic trajectory. It must also provide a function to update its internal
state based on a revised estimate of the kinematic trajectory.

Similarly the material interaction class must provide a function to compute its effect on
a reference kinematic trajectory (parameter vector change and covariance matrix increase),
and an update function for recomputing its internal state.

A generic hit class based on residuals is provided, where a residual is defined as a one-
dimensional constraint, with corresponding variance and dependence on kinematic trajectory
parameters. Similarly, a generic material class based on a material in the form of a thin
surface section is provided.

Several fully implemented example detector classes are provided in the KinKal Examples
library. For instance, a residual hit subclass based on a TPOCA constraint to a line segment
representing the wire in a drift cell is provided. A purely time-based residual subclass based
on measurement of a time in a detector with linear signal propagation (such as a scintillator
bar or crystal), and a measurement class making a direct Gaussian constraint on a subset of
parameters are also provided.

7 Updaters

Measurements and material interactions may need to be updated as the fit progresses, as the
estimate of their internal state or relevance to the fit may change. Updating is performed
by dedicated Updater classes, associated with a corresponding detector class. Thus a drift
cell hit subclass has an associated updater for fixing the left-right ambiguity. Any number



of Updaters may be associated with a given detector class, allowing factorization of different
effects, such as outlier removal, drift calibration, etc. Specific Updater class instances are as-
sociated with specific meta-iterations of the fit, as defined in the configuration section below
(section 10).

8 Magnetic Field

KinKal requires a magnetic field map class which can provide the field value vector and
gradient tensor at a given position. This may be implemented as a simple wrapper around
(say) a Geant4 magnetic field map. Fits of KinematicLine objects use a null field.

The helical trajectory parameterizations in KinKal implicitly account for particle motion
in a constant magnetic field. To account for spatial variations in the magentic field KinKal
divides the particle path into many contiguous segments or domains, each assuming a con-
stant local magnetic field. The domains are defined relative to a seed trajectory, which defines
initial parameters and particle path.

Domains are defined to keep the residual distortion of the momentum derived from the
fit within a tolerance specified by the fit configuration. Starting from one temporal end of
the seed, the domain are set by calculating the maximum the particle can proceed along the
seed trajectory, keeping the fractional difference in the momentum calculated using the initial
(fixed) field from the momentum calculated using the actual field within tolerance. The end
of that domain and the start of the next is set to that time, and the process continues till the
calculation reaches the end of the range of the seed.

A smaller tolerance value translates into finer segmentation (more domains). Similarly,
there are more, smaller domains in regions of rapid field change compared to regions of more
constant field. Having an adjustable tolerance on the magnetic field correction allows the end
user to make application-specific optimization of computing performance vs fit accuracy.

9 Kalman Filter Implementation

The KinKal Track class implements the Kalman filter fit and records its output. Track is
templated on a kinematic trajectory, and so can be used to fit using any of them. All kine-
matic and geometric functions in Track are implemented as call-downs to kinematic trajectory
functions, or detector objects through their adapters.

The Track constructor takes the hits and material interaction objects, wrapping the
detector-specific classes with generic adapters that interface directly with the fit implementa-
tion. It also takes the magnetic field map, and the seed estimate of the kinematic trajectory,
which is used to compute the magnetic domains defined above. The constructor also takes
a configuration object, which specifies the annealing schedule and the configuration of the
detector class updaters. The fit is performed on construction. Tracks may be extended after
construction to include additional hits, additional materials, or changes in the configuration.

The effect of magnetic field domains on the fit is implemented by the Domain class, which
records the domain boundaries and reference magnetic field, defined at the domain centers.
Domain objects are added to the fit on construction, based on the configuration parameters
defined below in section (10). At domain boundaries, the fit parameters are transported so
as to represent the same physical position and momentum, relative to the new domains mag-
netic field. The transport implementation uses the analytic derivatives of the parameters with
respect to magnetic field change provided by the kinematic trajectory classes.

The fit is implemented as an extended Kalman filter fit, performed as a nested set of iter-
ative loops. The inner loop performs Kalman filtering, repeated to algebraic convergence (or



divergence) in both forwards and backwards time direction. The effect of material transport
is reversed in reverse-time filtering; all other transport is symmetric. The internal state of all
detector objects are held constant during the inner loop, but the derivatives are re-computed
each iteration using the updated fit estimate. The outer (meta-iteration) loop updates the inter-
nal state of the detector objects and magnetic domains according to the configuration settings
and updaters associated with that particular meta-iteration, and applies the annealing factor
to the hit errors, before repeating the inner loop.

The filtering is performed symmetrically in both forwards and reverse time direction,
following the BaBar [6] Kalman filter fit implementation. The fit is initialized using the pa-
rameters at the appropriate end of the previous fit iteration, de-weighted by a configurable
parameter. Hits, material interactions and domain boundary transits are then processed in
time sequential order. Hits are processed in weight space by adding their constraint to the
current fit Weight. Material interactions and domain boundary transits are processed in pa-
rameter space. The fit uses lazy evaluation accessors to minimize the transitions between
weight and parameter space.

After filtering has converged, the Track class constructs an estimate of the complete parti-
cle trajectory as a collection of kinematic trajectories, whose individual time ranges contigu-
ously covers the full fit time range of the relevant data used to drive the fit. This piece-wise
kinematic trajectory breaks occur wherever the parameters change physically due to material
interactions, or where they change due to crossing a domain boundary. This fit is used as
reference for the next meta-iteration.

Fit status information including the convergence status and the fit chi-squared consis-
tency, is stored for each meta-iteration in the Track, providing the final status and the full
convergence history. The piece-wise kinematic trajectory computed at the end of the last
meta-iteration is stored in the Track object, providing downstream users with a coherent es-
timate of the particle’s spatial, temporal, and kinematic information, with covariance, at any
physical time.

10 Configuration

The fit behavior is defined by a Configuration object, which defines the annealing schedule,
the meta-iteration schedule, the convergence and divergence criteria, and the fractional mo-
mentum accuracy tolerance. The main Configuration object holds a vector of MetaConfig
objects, each configuring a single meta-iteration. MetaConfig contains the annealing temper-
ature as well as the Updater objects specific to that meta-iteration.

Updater objects are attached to specific MetaConfig instances using the std::any
paradigm. The MetaConfig object for a specific meta-iteration is passed to every object in
the Track during the update phase of that meta-iteration. Detector objects in the fit search for
relevant updaters inside the MetaConfig object in their update method, and if found, use those
algorithms and parameters to update their internal state. For instance, the machine learning
(ML) algorithm used to filter background straw hits in the Mu2e KinKal fit described below
is implemented as an updater associated with the Mu2e::StrawHit detector class (see section
11).

11 Mu2e KinKal Implementation

Mu2e implements hit and material detector classes to represent the straws in our straw tracker.
The straw hit provides a spatial residual based on the straws position and (optionally) drift
information, and a temporal residual based on the independent time-over-threshold measure-
ment.



The Mu2e straw material interaction class describes the effect of a particle traversing the
drift gas and straw wall. Straw material instances and straw hit instances in the same straw
are linked, such that the material effect is ignored if the straw hit is inactive in the fit. Straw
material instances for inefficient or dead straws are added between the initial , by using the
trajectory to find straws intersected without a hit. The amount of gas and aluminized mylar
traversed by a particle is estimated using the distance of closest approach between the straw
and the current fit estimate.

Mu2e also implements a hit class based on timing information obtained from clusters
measured in the CsI calorimeter. This hit is implemented as a time residual hit using a line
segment parallel to the crystal axis, positioned at the cluster centroid in the transverse direc-
tion, similar to how calorimetry information was used in BaBar [5]. This technique intrin-
sically corrects for the propagation time of the light to the SiPM, and provides an optimal
constraint on the t0 parameter in the fit.

Mu2e uses several Machine learning algorithms to define the internal state of the straw
hits. One is trained to separate hits from background particles from those belonging to the
track, deactivating the background hits in the next fit iteration. Another is trained to determine
when the left-right ambiguity measured using the current fit estimate is accurate. Another
is trained to determine when the ionization statistics in a given straw are likely to give an
accurate estimate of the drift radius given the drift time. These are used together to decide if
the drift information is accurate enough to constrain the fit to the left-right ambiguity-signed
drift radius (with small errors), or to the wire position (with larger errors). The background
hit rejection and drift quality algorithms are implemented as separate updaters, which can be
combined as needed in a given meta-iteration.

Mu2e uses a least-squares fit to 3-D hit straw positions to seed the KinKal fit. The initial
fit uses only the hits associated with that simple fit. After convergence, that fit trajectory is
used to search for additional hits and straw materials, and additional calorimeter clusters that
might have been missed by the least-squares fit. The fit is then extended to add those.

Mu2e has implemented a text-based interface to the Configuration object, allowing the
iteration parameters and updater algorithms to be specified in human-readable and editable
text.

Mu2e plans to use a KinKal fit based on the LoopHelix kinematic trajectory to search for
muon to electron conversion, with a fractional momentum tolerance of 10−4 and 12 meta-
iteration steps. This fit has been tested using a realistic Geant4-based simulation [7], which
showed that the fit meets the Mu2e scientific requirements. Mu2e has successfully used the
KinematicLine KinKal fit on cosmic rays observed in a sub-assembly of the track.

Mu2e plans to use a LoopHelix KinKal fit in its realtime event selection (trigger), which
will run on a dedicated server farm. Resource limitations require that fit be very efficient.
The trigger fit is configured to use a modest (10−2) fractional momentum tolerance, which we
find saves an order of magnitude in processing time compared to the analysis quality fit. The
trigger fit does not add hits or materials.

12 Dependencies

KinKal uses root [8] SMatrix package ([9]) to implement its matrix algebra. It uses the root
GenVector package [10] to describe spatial coordinates and vectors. The ANNs are trained
using Keras [11] and TensorFlow [12]. The ANN models are converted to C++ code using
the root SOFIE package [13].



Figure 2. ROC curve from the TensorFlow training of the background hit filtering ANN used in the
Mu2e KinKal track fit straw hit updater
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