Bayesian Methodologies with pyhf

Matthew Feickert'*, Lukas Heinrich?**, and Malin Horstmann? ***

!University of Wisconsin-Madison, Madison, Wisconsin, USA
2Technical University of Munich, Munich, Germany

Abstract. bayesian_pyhf is a Python package that allows for the par-
allel Bayesian and frequentist evaluation of multi-channel binned sta-
tistical models. The Python library pyhf is used to build such models
according to the HistFactory framework and already includes many
frequentist inference methodologies. The pyhf-built models are then
used as data-generating model for Bayesian inference and evaluated
with the Python library PyMC. Based on Monte Carlo Chain Methods,
PyMC allows for Bayesian modelling and together with the arviz library
offers a wide range of Bayesian analysis tools.

1 Introduction

The evaluation of High Energy Physics measurements depend on the comparison
with theoretical predictions. The phenomenology of the observation is represented
by a statistical model p(x|0), i.e. the probability distribution of data x for specific
theory parameters 6. Given actual observations z, the likelihood £(f) can then be
interpreted as p(x|0) with fixed = and is a measure of the compatibility between the
observed data x and the theory prediction depending on 6.

Based on p(z|f) there are different approaches to evaluating the model. In
the frequentist setting inference methodologies include maximum-likelihood point
estimation, hypothesis tests and confidence interval estimation. Applying Bayesian
statistics to p(x|€) is a different approach where the likelihood is used to update a
prior belief p(#) to a posterior belief p(f|x) about the probable values of the model
parameters 6.

In particle physics statistical models are often represented based on templates such
as HistFactory. HistFactory is a mathematical framework for building statistical
models of binned analyses across different channels, see Sec. 2.1. RooFit [1] is a
framework that already allows for Bayesian inference for HistFactory models, its
range of application though is limited by the lack of the implementation of gradients
and availability of advanced diagnostics for Bayesian inference results due to the
historical focus on frequentist inference in HEP. An example for a library that allows
for advanced Bayesian inference for particle and astro-physics is BAT. j1 [2] but tools

*e-mail: matthew.feickert@cern.ch
**e-mail: lukas.heinrich@cern.ch
***e-mail: malin.elisabeth.horstmann@cern.ch

to construct HistFactory models within Julia are not yet readily available !

pyhf is a Python library that implements the HistFactory template and already
allows for frequentist inference [4, 5]. It is the aim of this work to utilize the
Python library PyMC and the automatic differentiation capabilities of pyhf to enable
advanced Bayesian analysis for HistFactory models.

2 Bayesian Statistics for HistFactory Models
2.1 HistFactory Models and pyhf

In the HistFactory template, the expected event rates v are dependent on two sets
of parameters, free parameters 7 and constraint parameters y. In contrast to the free
parameters, the y are constrained by external data, whose impact has to be considered
when building the statistical model. This can be done by assuming auxiliary mea-
surements with observations a, for each parameter x. Each auxiliary measurement
then corresponds to a constraint term ¢, which is added to the likelihood and controls
the compatibility of the value of the constraint parameter x with their corresponding
auxiliary measurements a, [4-6]. For simplicity, the model for these auxiliary mea-
surements are either Gaussian or Poisson distributions.

Taking the constraints into account, the resulting statistical model for event rates n
and auxiliary measurements a is then given by [4, 5]:

p($|0) = pmain(xmain‘a)paux(xaux‘0)
=pm,aln,x)= [] Poiss(neslves(n x) [[exlaxl), (1)

c€channels bebins X

where pmain (Paux) and Tmain (Tmain) describe the actual and auxiliary statistical
model and observations for parameters 6.

The pure-Python library pyhf implements the HistFactory formalism for the
analysis of multi-channel binned statistical models [4, 5]. Statistical models can be
stored as pure JSON files, allowing for integration with other statistics libraries.
The numeric backend that pyhf uses is flexible, allowing for auto-differentiable
tensor-backends.

2.2 Bayes’ Theorem

Bayesian inference is governed by Bayes’ theorem [7]:

p(, aln, x)p(n, x) (2)

p(n, x|z, a) = (@)

It describes the updating of a prior probability distribution p(n,x) to a posterior
distribution p(n, x|*) by multiplication with a data-generating model p(z|n, x). 1, x
are parameters of interest (POI) and constraint parameters respectively and x, a ob-
servations and auxiliary measurements and evidence p(z,a). While a closed form
solution of Eq. (2) is intractable due to the evidence, approximate solutions are vi-
able via sampling methods (such as MCMC [8]) as only a tractable joint likelihood

p(z, aln, x)p(n, x) is required.

IThe LiteHF.jl [3] package is working towards HistFactory within a Julia context.

2.3 PyMC

PyMC is a Python library for building Bayesian models and already includes a wide
range of cross-checks and plotting functions through its arviz-backend [8, 9].

The statistical models are evaluated using Monte Carlo chain methods (MCMC),
where the posterior is represented by sampling from the prior distribution steered by
the likelihood. PyMC also allows for the implementation of external models, which
makes it suitable for performing Bayesian inference with pyhf-based HistFactory
models.

Within PyMC a whole set of MCMC techniques is available, e.g. prior and posterior
sampling or predictive sampling. The returned objects are arviz.InferenceData
containers, for which again the whole set of analytic tools provided by the arviz
library are available [9].

2.4 Prior Constraints from Auxiliary Measurements and Ur-Priors

In order to get a sampling representation of the posterior using MCMC methods the
prior distribution and the HistFactory models are needed, i.e following Eq. (2):

p(n, x|z, a) = p(z, aln, x)p(n, x)- (3)

While p(z,al|n, x) can be build using pyhf, the prior beliefs of the value of the pa-
rameters still have to be quantified. It would be possible to treat n and x equally,
i.e. to determine some ur-prior p(n, x) by hand and update with z and a in parallel.
Ur-priors describe the belief about the parameter value before taking the observations
into account.

The approach followed in this work however relies on a different treatment of the
constraint priors p(x). It is based on separating the auxiliary observations a from
the main inference step and using it instead in an initial inference step. In this step,
Bayes’ theorem is used to update ur-priors py,(x) with the auxiliary measurements
a, thus incorporating the information gained from the auxiliary measurements a, see

Eq. (4).
p(xla) ~ p(a|x)pur(X) (4)

The posteriors p(x|a) from Eq. (4) can then be used as prior belief in the main infer-
ence step.

This approach is useful, as the number of constraint measurements can get arbitrar-
ily high which would imply high computational cost when updating p(n) and p(x)
together. Splitting the auxiliary update of the constraint parameters into this initial
step solves this issue based on the concept of conjugate priors. This concept dictates
that for given sets of distributions for the priors and the data-generating model, the
posterior distribution is of the same distribution family as the prior and can be given
in closed form — the priors and posteriors are then conjugate. Due to the limited
possibilities for the auxiliary measurements (which can be either Gaussian or Poisson
distributed), this concept is viable for the constraint parameters with corresponding
Gaussian and Gamma distributed ur-priors, see Table 1 [7]. The freedom to choose
these compatible ur-priors is justified as the priors will be dominated by the auxiliary
measurements. Indeed, in the limit of very vague ur-priors the priors are completely
dominated by the auxiliary measurements a:

Our > Oaux ? /.t/ —a, OJ — Oaux,
!l
urs fur =0 — o, 3 —a. (5)

As the impact of the auxiliary measurements can now be implemented in closed
form, no sampling is needed for the implementation of the knowledge gained from the
auxiliary measurements a.

’ Posterior H Data-Gen. Model \ Ur-Prior ‘

N, o) || Nlalx, oaux) | N (Xlttar, our)
I (x|]o/, 5") Poiss (a|x) T (xlowr, Bur)

Table 1: Conjugate priors for Poisson and Normal distributed auxiliary measurements
a [7, 10].

While Table 1 fixes the general structure of the posterior distribution (to be used as
priors in the main inference), the hyperparameters governing these still have to be
determined.

For a single auxiliary measurement a, the hyperparameters for the Gaussian posteriors
of x for some given ur-hyperparameters fi,, oy follow [10]:

2 2 2 2
! Jauxaur ,LLur + a ! Uauxaur (6)
L s R P R 9T g2
aux ur ur aux aux ur

The hyperparameters describing the posterior Gamma distribution for a single auxil-
iary observation a can for some given ur-hyperparameters ay,, Sur be derived as:

a = Qur + a, 51 = Bur + 1, (7)

In contrast to the Gaussian constraints, the implementation of the Poisson constraints
in pyhf comes with the following change of variable:

x%7=§- (8)
Using:
p(x)dx = p(y)dy 9)

the posterior Gamma distribution over -y is then derived as:

/

rand ot ‘a
pile) % Do, B) g = aqie ™™
~T(1]e’,a8') = Tl + a,a(Bur +1)): (10)

Applying the methods described above to Eq. (2), the final form of Bayes’ theorem
used in this work then reads:

p(n, x|z, a) o< p(z|n, x)p(n)p(x|a). (11)

2.5 Hamiltonian Monte Carlo Sampling

pyhf supports auto-differentiation via its jax, torch and tensorflow back-
ends [4, 5, 11-13]. Therefore, the Hamiltonian Monte Carlo (HMC) step method
provided by PyMC is viable for analysing pyhf HistFactory models. Details on the

Background Background, thinned chains

1.00 B Metropolis-Hastings 10 Bmm Metropolis-Hastings, thin: 12
HMC 0.8 HMC, thin: 6
0.75 -
s s
% 050 z 06
£ £ 04
l [:
o o
E: I b HH”“ m ‘ g 02
< 0.00 I (TR W < |
e “NWH“M‘”‘ I i 00 l"ul|‘”“I‘""\'l"“"|‘|\"\H|“ “‘\.II‘.J‘I\I,IM.I‘.H [
’ -0.2
0 20 40 60 80 100 0 20 40 60 80 100
Draws Draws

Figure 1: Autocorrelation length for the background parameter for HMC and
Metropolis-Hastings steps. The left plot shows the original chains, the right the
thinned chains. The shaded band indicates the acceptable length.

HMC sampling method can be found in [14]. For this work, it is sufficient to point
out that HMC relies on the derivatives of the model — and while this comes with a
computational cost, the quality of the drawn samples should be higher compared to
other step methods, such as Metropolis-Hastings [15].

The quality of MCMC chains can be measured using the autocorrelation length, i.e.
the correlation between subsequent samples. Independent samples are necessary to
fully express the parameter space. In order to reduce the autocorrelation length,
thinning can be applied. In thinned chains, only every nth sample is kept in the
final chains [16]. Fig. 1 visualises how the Metropolis-Hastings chains have to be
thinned twice as much (n = 12) compared to the HMC chains (n = 6) in order
to keep the autocorrelation within an acceptable range (see Sec. 3 for the model
used). Accordingly, in order to produce sampling chains of the same magnitude, the
computational cost of the gradient calculation can seen as substituting the cost for
drawing twice as many samples for Metropolis-Hastings steps.

3 A Bayesian Workflow

For testing and evaluating the Bayesian inference model we follow Ref. [17] and
present the selected steps below.

We demonstrate the inference methods derived in Sec. 2, i.e. building a statistical
model using pyhf and then evaluating it using the whole range of inference techniques
provided by PyMC and arviz, using a simple model. This model has three bins and one
signal strength parameter 7 (the POI of the model) and one correlated background
parameter x (constrained by a Normal-distributed auxiliary measurement) with ur-
hyperparameters iy, our = 0,2. The event counts n; for each bin 7 and a signal s;
and background b; can be calculated as:

n; = ns; + xbi. (12)

The main result of Bayesian inference are the posterior parameter distributions, which
can be used to predict observations (predictives). These results are visualized in Fig. 2.
A possible next check is a calibration check, which tests the computational faithfulness
of the inference, i.e. whether the distribution of posterior samples can capture a
distribution of pseudo-data observations. In particular, if a set of pseudo-observations

250 o Prior Predictive
ol e Posterior Predictive
+ Data
200
£ 150
s "'b —— Prior 5
o . > .
c .\”'I/ —— Posterior w
[33]
5 T — Truth
2 9 7 P f 10014
g x ! :
& o 18 ol } |
é'»‘f’op N R
ackground Signal strength 0 1 >
(a) Correlation for signal and Bins
background distribution. Indi- (b) Prior and posterior pre-
cated in black is the underlying dictive. Indicated in black
truth. is the observed data.

Figure 2: Comparing prior and posterior distribution for the parameters (2a) and
predictions for the observations (2b).

Prior
B Posterior

Prior
[Posterior

5 10
Signal Strenth

-2 2

0
Background

Figure 3: Calibration check for the signal POI and the background using 3000 pseudo-
observations drawn from the prior predictive.

x is sampled from the prior predictive, the resulting distribution of posteriors should
approximate the prior distribution, see Eq. 13.

!
p(n,x) = /dxdn’dx' p(n.xlz) pyln',x") (13)

In Fig. 3 this is visualised for the simple model introduced above.

4 Conclusions

The methods presented above are implemented in the Python package
bayesian_pyhf [18]. This software package enables the parallel Bayesian and fre-
quentist analysis of multi-channel binned models within the single software framework
pyhf. The current interface of the package bayesian_pyhf is demonstrated in List-
ing 1. Further enhancements regarding the user interface and stability with respect
to multi-chain sampling are ongoing. A full integration in the pyhf library is also
planned.

with infer.model(model, unconstr_priors, data):
post_data = pymc.sample(draws=10_000, chains=1)
post_pred = pymc.sample_posterior_predictive(post_data)
prior_pred = pymc.sample_prior_predictive(10_000)

Listing 1: Pseudo-code for evaluating HistFactory models (model) using PyMC
given unconstrained parameters (unconstr_priors) and observations (data).
post (prior) _pred are the posterior (prior) predictives and post_data are the sam-
ples from the posterior distribution. Following the PyMC syntax [8], the with state-
ment opens a context, that initializes the inference in a way that all actions within
the block are interpreted with respect to the given model, data and priors. In ad-
dition, the methodologies regarding conjugate priors from Sec. 2.1 are applied under
the hood, resulting in the constraint priors which are added to the model parameters
for sampling.

5 Acknowledgements

MH and LH are supported by the Excellence Cluster ORIGINS, which is funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy - EXC-2094-390783311. MF is supported by the
U.S. National Science Foundation (NSF) under Cooperative Agreement OAC-1836650
(IRIS-HEP).

References

[1] R. Brun, F. Rademakers, Root - an object oriented data analysis framework,
proceedings ATHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth.,
www:https://root.cern/download/lj.ps.gz

[2] O. Schulz, F. Beaujean, A. Caldwell, C. Grunwald, V. Hafych, K. Kroninger,
S.L. Cagnina, L. Rohrig, L. Shtembari, SN Computer Science 2, 210 (2021)

[3] LiteHF.jl, http://github.com/JuliaHEP/LiteHF. j1

[4] L. Heinrich, M. Feickert, G. Stark, pyhf: v0.7.2, https://github.com/scikit-
hep/pyhf/releases/tag/v0.7.2, https://doi.org/10.5281/zenodo. 1169739

[5] L. Heinrich, M. Feickert, G. Stark, K. Cranmer, Journal of Open Source Software
6, 2823 (2021)

[6] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, W. Verkerke (ROOT), Tech. rep.,
New York U., New York (2012), https://cds.cern.ch/record/1456844

[7] Accessed: 09.08.2023, https://people.eecs.berkeley.edu/~jordan/
courses/260-springl0/other-readings/chapter9.pdf

[8] A.P. Oriol, A. Virgile, C. Colin, D. Larry, F.C. J., K. Maxim, K. Ravin, L. Ju-
peng, L.C. C., M.O. A. et al., PeerJ Computer Science 9, e1516 (2023)

[9] R. Kumar, C. Carroll, A. Hartikainen, O. Martin, Journal of Open Source Soft-
ware 4, 1143 (2019)

[10] K. Murphy, Conjugate Bayesian analysis of the Gaussian distribution (2007),
https://www.researchgate.net/publication/229000727_Conjugate_
Bayesian_analysis_of_the_Gaussian_distribution

www: https://root.cern/download/lj.ps.gz
http://github.com/JuliaHEP/LiteHF.jl
https://doi.org/10.5281/zenodo.1169739
https://cds.cern.ch/record/1456844
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter9.pdf
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter9.pdf
https://www.researchgate.net/publication/229000727_Conjugate_Bayesian_analysis_of_the_Gaussian_distribution
https://www.researchgate.net/publication/229000727_Conjugate_Bayesian_analysis_of_the_Gaussian_distribution

[11]

[12]

J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne et al., JAX: compos-
able transformations of Python+NumPy programs (2018), http://github.com/
google/jax

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,
A. Davis, J. Dean, M. Devin et al., TensorFlow: Large-scale machine learning
on heterogeneous systems (2015), software available from tensorflow.org, https:
//www.tensorflow.org/

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, A. Lerer (2017)

N.K. Vishnoi, An introduction to hamiltonian monte carlo method for sampling
(2021), 2108.12107

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, The
Journal of Chemical Physics 21, 1087 (1953)

S. Hoyer, J. Hamman, Journal of Open Research Software 5 (2017)

M. Betancourt, Towards a principled bayesian workflow, accessed: 09.08.2023,
https://betanalpha.github.io/assets/case_studies/principled_
bayesian_workflow.html

M. Horstmann, bayesian_pyhf, https://github.com/malin-horstmann/
bayesian_pyhf

http://github.com/google/jax
http://github.com/google/jax
https://www.tensorflow.org/
https://www.tensorflow.org/
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://github.com/malin-horstmann/bayesian_pyhf
https://github.com/malin-horstmann/bayesian_pyhf

	1 Introduction
	2 Bayesian Statistics for HistFactory Models
	2.1 HistFactory Models and pyhf
	2.2 Bayes' Theorem
	2.3 PyMC
	2.4 Prior Constraints from Auxiliary Measurements and Ur-Priors
	2.5 Hamiltonian Monte Carlo Sampling

	3 A Bayesian Workflow
	4 Conclusions
	5 Acknowledgements

