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Abstract. The growing amount of data generated by the LHC requires a shift
in how HEP analysis tasks are approached. Efforts to address this computational
challenge have led to the rise of a middle-man software layer, a mixture of sim-
ple, effective APIs and fast execution engines underneath. Having common,
open and reproducible analysis benchmarks proves beneficial in the develop-
ment of these modern tools. One such benchmark is provided by the Analysis
Grand Challenge (AGC), which represents a specification for realistic analysis
pipelines. This contribution presents the first AGC implementation that lever-
ages ROOT RDataFrame, a powerful, modern and scalable execution engine for
the HENP use cases. The different steps of the benchmarks are written with a
composable, flexible and fully Pythonic API. RDataFrame can then transpar-
ently run the computations on all the cores of a machine or on multiple nodes
thanks to automatic dataset splitting and transparent workload distribution. The
portability of this implementation is shown by running on various resources,
from managed facilities to open cloud platforms for research, showing usage of
interactive and distributed environments.

1 Introduction

Research in High Energy and Nuclear Physics (HENP) has always been entangled with large
computational challenges, which are addressed by a well-structured data lifecycle. This de-
fines the various processes involved in the management of collision data coming from the
most important technical instrument for the physics programme of the field, the Large Hadron
Collider (LHC) at CERN. The last steps of this lifecycle involve the operations performed on
fixed datasets that LHC experiments store in their data centers. Data management systems,
data transfer (including remote or local I/O), execution engines (single or multi node), com-
puting resource managers, analysis interfaces, processing kernels and visualization routines
can all fit in this context, which can be broadly described as the HEP data analysis landscape.
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The tools used by different LHC experiments, university groups or single physicists are
varied and depend on the different use cases at hand. Some experiment collaborations such
as ATLAS or CMS provide centralised software frameworks to serve common cases which
are shared and used by all collaborators in their analyses [1, 2]. Similarly, research groups
may have their own specialised analysis software that caters to the particular needs of their
analysis jobs.

In this field, a common building block for higher-level software packages is ROOT [3],
a de facto standard toolkit for storage, processing and visualization of HEP data. It is a
C++-based project with full Python compatibility thanks to dynamic bindings, featuring a
multitude of components. In particular, it offers a modern data analysis interface called
RDataFrame [4], featuring a high-level programming model and lazy execution of the compu-
tations. This interface allows users to define the operations of their analysis and then execute
them sequentially or in parallel in a transparent way. It supports native parallelisation on a
single machine via implicit multithreading but also on multiple nodes by using a distributed
execution layer that interacts with cluster resources [5].

Considering the plethora of workflows that can be found in physics analyses, ROOT and
other software packages providing analysis interfaces such as coffea [6], nanoAOD-tools [7],
or ADL [8] must strive to provide generic APIs that can cater to as many use cases as possible.
In particular, this involves the implementation of specialised computation kernels that may
appear often in HEP computations (e.g. computing the mass of a system of particles). At
the same time, this means that the software tools tremendously benefit from having as many
example workflows as possible, to be able to optimise for the various cases.

The full-scale analyses run in production by LHC collaborations are often not available
as target benchmarks for software interfaces, due to access restriction to experiment data.
Knowledge coming from the community regarding what usually happens in physics applica-
tions is thus distilled in smaller examples or tutorials that serve as a starting point for new
users of the software. This can be seen for example in the official RDataFrame tutorials
webpage [9]. In the last few years, with more advances in the analysis interfaces themselves
and more community awareness, the available analysis examples have grown in number and
complexity, especially helped by the increase in data availability thanks to the CERN Open
Data Portal. Among these examples we can find some analyses using open data from the
CMS experiment that provide more realistic workflows than available before [10].

More recent community efforts furthered the same goals of providing a common ground
for understanding and optimising different analysis workflows. In particular, the Analysis
Grand Challenge project (AGC) [11] represents a specification for more realistic HEP anal-
yses. It aims at combining a series of analysis tutorials and the tools that enable the end-
to-end processing pipeline. The project provides a reference implementation of the analysis
benchmarks, which can be used as a starting point to showcase different frameworks. In
fact, this paper demonstrates the first implementation of one reference physics analysis using
RDataFrame. In the following sections, the steps required to implement the application will
be described in detail. In particular, this is developed in the Python language, aligned with
the reference implementation. The differences in user experience are discussed, with a focus
on making the RDataFrame workflow as Python-idiomatic as possible. Finally, the execution
of the application is demonstrated running in parallel on multiple computing nodes, thanks to
the distributed capabilities of RDataFrame.

2 Translation of the reference analysis

The reference implementation of the AGC is available in a public repository [12]. For the
purposes of this work, the task taken in consideration is a tt̄ analysis performed on open data
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from the CMS experiment, originally collected in 2015. The analysis task includes event
selection, weighting, definition of new observables, application of systematic variations and
aggregation into histograms for plotting. Being a project in continuous evolution, the AGC
also defines a set of reference versions for the presented analysis [13]. At the beginning of the
development of this work, the version in place was 0.1.0, so that will be taken as reference
for the rest of the article.

The reference implementation features a set of different tools used for the separate parts
of the analysis pipeline. The main interface for data analysis used is based on the coffea
package. Listing 1 shows a summarised snippet of code representing the steps needed to
run the analysis. The user needs to implement a subclass of the processorABC abstract
class that contains all the details of the analysis logic (lines 3-5). An executor instance is
responsible of executing the computations on the input dataset. Executors in coffea can run
the application in parallel, both on the same machine and on multiple nodes. For example,
the FuturesExecutor shown in line 3 runs on multiple local cores using Python futures. A
Runner object takes the input dataset (in the form of a dataset name and a set of files), the
executor and the processor instances to steer the whole execution.

1 from coffea import processor

2

3 class TtbarAnalysis(processor.ProcessorABC):

4 def __init__(self, *args): ...

5 def process(self, events): ...

6

7 ex = processor.FuturesExecutor(workers=N_CORES)

8

9 run = processor.Runner(executor=ex, ...)

10

11 run(fileset, dataset_name, processor_instance=TtbarAnalysis())

Listing 1: Summary of the main ingredients involved in the data analysis step of the reference
implementation.

Listing 2 shows the same key ingredients as needed by the implementation of the task
using RDataFrame. Users can define the analysis logic starting by the input dataframe
and then appending any amount of operations needed, following the high-level API with
a lazy-execution model (line 5). The input dataset specification (same as the one used
in the reference implementation) is used as input argument to the RDataFrame instance
(line 7). Parallelisation on a single machine with multithreading is activated via a call to
EnableImplicitMT (line 3).

The task at hand contains multiple steps of analysis logic and different computations.
Clearly, the objective of new implementations is to replicate the same logic as the refer-
ence.The selection step of the analysis task is taken into consideration to draw a comparison
between the two implementations for what concerns specifically the API. Listings 3 and 4
show respectively the reference implementation and the RDataFrame one. On the one hand,
the reference API shows usage of a particular type of Pythonic arrays that can be adapted to
the jagged arrays typical of HEP use cases, defined in the awkward array library [14]. The li-
brary offers both the implementation of the arrays and utility functions for their manipulation
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1 import ROOT

2

3 ROOT.EnableImplicitMT()

4

5 def run_analysis(dataframe): ...

6

7 df = ROOT.RDataFrame(dataset_name, fileset)

8

9 run_analysis(df)

Listing 2: Summary of the main ingredients involved in the RDataFrame implementation of
the task.

(such as seen in ak.count). On the other hand, RDataFrame allows users to pass functions
that manipulate the underlying data to the operations in the API, such as Define or Filter.
When writing a C++ program making use of the RDataFrame interface, user functions can
be passed to RDataFrame methods as any type of C++ callable object. When writing Python
code, as in the current example, Python strings containing valid C++ code should be passed,
as demonstrated in Listing 4. Such strings are just-in-time (JIT) compiled into performant
C++ code via the ROOT C++ interpreter cling [15].

1 selected_electrons = events.electron[events.electron.pt > 25]

2 selected_muons = events.muon[events.muon.pt > 25]

3 event_filters = (

4 (ak.count(selected_electrons.pt, axis=1) +

5 ak.count(selected_muons.pt, axis=1)) == 1)

Listing 3: Event selection steps in the reference application.

1 selected_events = (

2 df.Define('electron_pt_mask', 'electron_pt>25')

3 .Define('muon_pt_mask', 'muon_pt>25')

4 .Filter('Sum(electron_pt_mask) + Sum(muon_pt_mask) == 1')

5 )

Listing 4: Event selection steps in the RDataFrame application.

The listings shown reflect different approaches of the APIs. As many operations needed
by physicists revolve around intra-event array manipulation, this is also where the differences
in the APIs are more visible. The reference implementation makes use of a Python-only
API, which adapts to the most used HENP computations by employing numpy-array-like er-
gonomics. This also results in executing user-defined workflows on the entire arrays, which
hides the extra overhead that could be expected when running pure Python for-loops by del-
egating the execution to optimised C code. The RDataFrame implementation instead runs
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user functions event-by-event, supporting a more well-known approach that can be more fa-
miliar to physicists. The current status of the API integrates Python bindings with the need
to define C++ code in strings, which results in less Python-idiomatic code that is mitigated
by the direct access to C++ performance. Nonetheless, this limitation is known and currently
part of further research, as discussed in Section 3. Overall, the new implementation clearly
presents differences in the API and different usage of typical HEP computation kernels. At
the same time, it preserves the analysis logic of the reference application and produces ex-
actly the same final histograms. The translation of the analysis to RDataFrame is available in
a public repository [16].

3 Enhancing user experience with a Pythonic API

Having the full power of a C++ interpreter comes in handy in many occasions, as it allows not
only to define functions on-the-fly but also to load externally-compiled fully-optimised C++
libraries directly in the Python script. Nonetheless, it is not always ideal to mix interfaces and
syntaxes of two different languages in the same application. The ROOT project invests into
bridging this language gap. In particular, for the RDataFrame API, this for example includes
allowing users to pass Python callables directly instead of defining C++ code in strings. The
general idea is having a way to extract a C++ compatible function from a Python callable.
The approach that was adopted is that of compiling the Python code into a C function, the
memory address of which can be then given to cling. The C++ interpreter is then able to run
the C function as part of the RDataFrame operation execution. The translation of Python code
into C is made possible by the Numba library [17]. As an example, Listing 5 shows how the
event selection step could be rewritten by substituting the string expressions seen in Listing 4
with simple and idiomatic Python lambda functions, which in turn can also make use of
popular Python libraries such as Numpy [18] (line 5). The whole analysis example is thus
re-written to use this new interface, the full application is available in a public repository [19].

1 selected_events = (

2 df.Define('electron_pt_mask', lambda electron_pt: electron_pt > 25)

3 .Define('muon_pt_mask', lambda muon_pt: muon_pt > 25)

4 .Filter(lambda electron_pt_mask, muon_pt_mask:

5 numpy.sum(electron_pt_mask) + numpy.sum(muon_pt_mask) == 1)

6 )

Listing 5: Examples of Python lambdas passed to the RDataFrame API.

4 Distributed execution tests

The RDataFrame version of the AGC benchmark was continuously tested locally during de-
velopment, to ensure full compatibility between the new results and their reference. One of
the goals of the project is also to showcase how this type of interactive analysis workflows,
in particular brought forward by the popularisation of the Jupyter notebook, fits well also
in distributed infrastructures. To this end, the distributed RDataFrame layer made the tran-
sition from one machine to multiple nodes seamless, allowing testing the analysis different
distributed environments using the popular Dask Python library as execution engine.
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4.1 Test setup

A first round of tests was performed on an HPC cluster at CERN. Resource management is
done via Slurm. Each computing node of the cluster has the following characteristics: 2x
AMD EPYC 7302 16-Core CPU; 512GB DDR4 3200Mhz RAM; 10Gbit ethernet connec-
tion.

For the scaling tests, up to 8 computing nodes were requested from the cluster, to run the
analysis in parallel up to a maximum of 256 concurrent cores. Every node is requested with
exclusive access, so that while the jobs are running no other process can interfere with the
measurements. One separate node is also requested to act as the Dask scheduler.

Another set of tests was carried out on the Virtual Research Environment (VRE) [20],
which is a fully integrated data analysis environment built around JupyterHub 1. The VRE
relies on a microservices-oriented and cloud-agnostic design, allowing its architecture to be
portable while easily integrating with other industry-standard technologies. The VRE ex-
poses a data catalogue managed and orchestrated by the Rucio software package [21] and
gives users the possibility of processing data by exploiting the power of workflow managers
such as Reana [22] and Dask. The current VRE cluster runs on the CERN OpenStack cloud
and uses Magnum Kubernetes as a compute backend for job distribution across 23 worker
nodes made up mostly of 2x Intel(R) Xeon(R) Silver 4216 2.10GHz CPUs, 192GB DDR4
2933Mhz RAM and connected to a 10Gbit ethernet network, for an overall count of 184
vCPUs and 335.8 GB RAM. The analysis is run on the VRE by sending a declarative ‘re-
ana.yaml‘ file to the Kubernetes Reana cluster by specifying the IP address of the Dask sched-
uler; in this way, the analysis is distributed across all the cloud nodes.

The input dataset total size is 3.6 TB, of which roughly 5% is actually read by the analysis
task. It is stored at CERN using EOS, the CERN storage system.

4.2 Results

This section reports the benchmark results using the CERN HPC cluster. The Python script
is executed on the full dataset, choosing an increasing number of cores to parallelise the
computations. For each core, one task is created that will run on a different subrange of
entries from the total input dataset (different subranges do not overlap). Figure 1 shows the
results of the benchmarks. The left image represents the end-to-end runtime, also called
time-to-plot, which includes every step from the creation of the RDataFrame object to the
retrieval of all the histograms. The total runtime decreases steeply with the number of cores
used, crossing two orders of magnitude from a maximum of 5679 ± 147 s to a minimum of
50 ± 3 s. The plot also presents error bars (vertically, in red, at any core count), but they are
not big enough to represent any unexpected variance. The right image shows the same results
expressed in terms of speedup with respect to the one core count. Being a log-log plot, the
trend is clearly ideal at least until only one machine is used, i.e. the 32 core mark. The last
three data points present some non-idealities in the speedup, closing at the 256 core mark
with a speedup of 115. These may include network latency, poor scheduling which could be
improved by increasing the number of tasks or implementing an asynchronous prefetching
of the dataset entries, or also not having enough data since the total runtime at 256 cores is
below one minute.

5 Conclusions
This work demonstrated a first implementation of the Analysis Grand Challenge tt̄ tutorial
using the ROOT RDataFrame interface. The new implementation demonstrates usage of a

1https://jhub-vre.cern.ch/
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(a) (b)

Figure 1: Results of running the AGC example with RDataFrame on the Slurm cluster at
CERN. On the x axis of both figures, until the 32 cores data point the parallelisation happens
on the same computing node. Consecutive core counts involve true distribution of computa-
tions over multiple nodes, up to a total of 8 nodes at the maximum of 256 cores. a: end-to-end
runtime of the analysis. b: speedup with respect to the one core data point.

high-level programming model that can seamlessly allow parallelisation on one or multiple
computing nodes. Differences in the code development experience were highlighted in Sec-
tion 2, which do not alter the analysis logic but may present a different approach needed when
thinking about function definitions and jagged array manipulations. A fully Python-idiomatic
version of the RDataFrame AGC benchmark was shown in Section 3, which makes use of
the Numba library. Although it already provides a way to greatly shorten the C++-Python
language gap, it is still limited to mathematical operations on one-dimensional arrays and in
general needs to go hand-in-hand with improvements in Numba to make full use of the power
of C++ classes. Finally, Section 4 has shown the potential speedup improvements brought
by running the interactive analysis tutorial on distributed execution environments.
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