Making Likelihood Calculations Fast: Automatic Differenti-
ation Applied to RooFit

Garima Singhl’z’*, Jonas Rembser'**, Lorenzo Moneta!, David Langez, and Vassil Vassilev?

'EP-SFT, CERN, Espl. des Particules 1, 1211 Meyrin, Switzerland
2Department of Physics, Princeton University, Princeton, NJ 08544, USA

Abstract. With the growing datasets of current and next-generation High-
Energy and Nuclear Physics (HEP/NP) experiments, statistical analysis has be-
come more computationally demanding. These increasing demands elicit im-
provements and modernizations in existing statistical analysis software. One
way to address these issues is to improve parameter estimation performance
and numeric stability using Automatic Differentiation (AD). AD’s computa-
tional efficiency and accuracy are superior to the preexisting numerical differen-
tiation techniques, and it offers significant performance gains when calculating
the derivatives of functions with a large number of inputs, making it particularly
appealing for statistical models with many parameters. For such models, many
HEP/NP experiments use RooFit, a toolkit for statistical modeling and fitting
that is part of ROOT.

In this paper, we report on the effort to support the AD of RooFit likelihood
functions. Our approach is to extend RooFit with a tool that generates overhead-
free C++ code for a full likelihood function built from RooFit functional mod-
els. Gradients are then generated using Clad, a compiler-based source-code-
transformation AD tool, using this C++ code. We present our results from
applying AD to the entire minimization pipeline and profile likelihood calcula-
tions of several RooFit and HistFactory models at the LHC-experiment scale.
We show significant reductions in calculation time and memory usage for the
minimization of such likelihood functions. We also elaborate on this approach’s
current limitations and explain our plans for the future.

1 Introduction

RooFit [1] is a powerful statistical modeling and fitting library widely used in particle physics,
particularly at CERN (European Organization for Nuclear Research), for performing complex
statistical analyses of experimental data. It is built on top of the ROOT [2] data analysis
framework and provides tools specifically designed for constructing and fitting probability
density functions (PDFs) to experimental data. RooFit plays a crucial role in a wide range
of physics analyses, particularly in experiments at the Large Hadron Collider (LHC), where
it is used to extract valuable information about particle properties, interactions, and potential
new phenomena. As such, it is crucial to expand the capabilities of RooFit to accommodate

*e-mail: garima.singh@cern.ch
**e-mail: jonas.rembser@cern.ch

the increasing intricacy of data analyses spanning various areas of physics, including the
emerging experiments at the LHC.

In the usual studies conducted with RooFit, one has to minimize log-likelihoods with up
to thousands of free parameters spread over up to hundreds of likelihood components, each
representing a different measurement channel. Performing this minimization iteratively, one
generally has to know the likelihood gradient with respect to all free parameters. Naively, the
gradient can be found numerically by varying one parameter at a time and reevaluating the
full likelihood. In most cases, however, it is unnecessary to reevaluate the full mathematical
expression when only one parameter is changed, which is why RooFit includes a sophisticated
caching mechanism. Here, individual mathematical components of the model are represented
as separate objects (or groups thereof) that cache their previous results. These results are then
used to selectively reevaluate only the parts of the model that are affected by a change in the
input parameters during the numerical gradient calculation.

While the caching approach works well for reducing the overall numeric gradient calcula-
tion time, it still has plenty of shortcomings that can incur significant overhead. For example,
it requires lots of bookkeeping of values, virtual function calls, redundant revaluation if the
caching granularity is not high enough, etc. Our work aims to remove these shortcomings
by deviating from the caching paradigm and instead translating the full expression graph to
overhead-free, independent C++ code. This C++ code representation of the statistical model
can then be used with any third-party tool to provide high-performance Automatic Differen-
tiation (AD) based gradients that can be used to replace numerical gradient calculations at
various places in RooFit [3].

2 Background
2.1 Automatic Differentiation

Automatic Differentiation (AD), or Algorithmic Differentiation, is a set of mathematical tech-
niques that can efficiently calculate accurate derivatives of computer programs. AD breaks
down a complex program into an elementary set of instructions and then applies the chain rule
of differential calculus over those instructions to propagate the derivatives through the pro-
gram. AD can also handle functions with multiple inputs and outputs, making it particularly
suitable for applications with high-dimensional parameter spaces, like RooFit.

AD majorly defines two modes of operation - forward accumulation mode and reverse
accumulation mode. For an arbitrarily complex function y = f(g(x)) that can be split into
intermediate steps as follows:

wo=x w;=gx) wr=fgx) =y (1

The forward and reverse accumulation modes are defined as follows:

611),' aw,- awi_l 6[/ 61/ (')IUH.]
— = d — = 2
ox Ow;_; * Ox an ow; 0wy * ow; 2

AD has many advantages over numerical differentiation, the mode of gradient calculation
used in RooFit. Firstly, unlike numerical differentiation, which only calculates an estimate,
AD calculates the exact derivative of a program. AD is also more suited to problems with
a large number of parameters because it does not require a full reevaluation of the target
function every time a gradient with respect to a different parameter is requested.

double sqr(double x){ clad: :differentiate(sqr, “x”) double sqr_darg@é(double x){
return x * x; > double _d x = 1;
} return _d_x * x + x * _d_x;

Figure 1. An example function being forward-differentiated by Clad. Here the RHS represents
the derivative code generated by Clad.

2.2 Source Code Transformation based AD

While there are multiple flavors of AD, the two most popular are operator overloading AD
and Source Code Transformation AD. Operator Overloading (OO) AD typically defines a
custom data type that augments the basic arithmetic operations with derivative generation
logic. This allows the tool to track derivatives as the program executes these overloaded
operations. Some examples of OO tools include PyTorch [4], CoDiPack [5], etc. On the
other hand, Source Code Transformation (SCT) synthesizes the derivative code by analyzing
the source code of the target program. The derivative code can then be compiled and executed
as regular code. Examples of SCT tools are Clad [6], Enzyme [7], etc.

While the OO AD approach is suitable for smaller and newer projects, it is hard to use OO
on larger and more complex applications because it often requires handwriting annotations
and changing data types. On the other hand, as long as the AD tool supports the constructs
used in the target application, SCT requires no additional changes. Moreover, since the SCT
approach generates code that can be compiled and subject to compiler optimizations, it is
usually more performant than the OO approach.

For these reasons, we use Clad [6], a compiler-based SCT tool for programs written in
C/C++. Clad inspects the internal compiler representation of the target function to generate
its derivative. Fig. 1 showcases an example program transformation Clad performs on the
target function to generate its derivative. Clad’s proximity to the compiler allows for more
control over the derivative synthesis, allowing us to also insert RooFit-specific optimizations
while building the derivative code. Moreover, Clad has good support for modern C++ con-
structs and has off-the-shelf integration with Cling [8] (the C++ interpreter used in ROOT),
making it an ideal choice for our work.

3 Design and Implementation

While the AD techniques and tools discussed in the previous section work very well for
most applications, they struggle to correctly differentiate applications with side effects (such
as classes and other object-oriented programming constructs). AD tools rely on access to
the mathematical operations and dependencies between variables in a program to compute
derivatives accurately. When these details are hidden or abstracted in a way that is not easily
accessible, either through high-level object-oriented design principles or abstraction at lower
levels, it becomes challenging to integrate AD into such frameworks.

RooFit is a prime example of such a framework as it relies heavily on the use of high-level
abstractions, often hiding the mathematical meaning of the different components, to promote
ease of use. One example of such an abstraction in RooFit is illustrated in Fig. 2, where a
common mathematical formula is represented by a C++ object of the same name. RooFit
has many such mappings between different mathematical notations and "Roo" objects. While
these mappings are crucial to keep RooFit from becoming over-complicated and hard to use,
they often obfuscate important details required by AD tools for differentiation.

1

f(z) =

e ——» [//Obj represents f(x) here
oV 2T RooGaussian obj(x, mu, sigma) ;

Gaussian Probability

Distribution Function (PDF) Equivalent Code in C++ with RooFit

Figure 2. An example of data abstraction implemented by RooFit. In RooFit, whenever a user

wants to use a Gaussian PDF, they have to use an object of type RooGaussian instead. While this
connection is obvious to the user or programmer, it is not so obvious to an AD tool like Clad.

To combat this issue, we introduce a "translation" system as a pre-processing step in the
AD pipeline. This translation step aims to extract the differentiable properties of each of the
abstracted RooFit classes such that they can be differentiated using AD. Since we use Clad in
our work, we extract these differentiable properties into a single, stateless C++ function. We
do this translation by introducing two functions for each RooFit class — a stateless function
describing the underlying mathematical notation of the class as simple C++ code and a "glue"
function that enables all of the former stateless functions of the nodes in the compute graph
to be "glued" together to make a single free C++ function. In this work, we refer to this
pre-processing step as Code-Squashing. This "squashed" function represents the full RooFit
model and can later be compiled by the C++ interpreter Cling and then be differentiated using
Clad. Fig. 3 describes an example of the functions discussed above for the RooGaussian class
(as seen in Fig. 2). Further, Fig. 4 illustrates an example of the generated squashed-code from
a simple RooFit workspace description.

Stateless function enabling differentiation of each class. The “glue” function enabling graph squashing.

void RooGaussian::translate(...) override {
double ADDetail: :gauss(double x, double m, double s)

{

return "ADDetail::gauss(" +

x->getRes() + "
const double arg = x - m; -

+ _mu->getRes() + "
return std::exp(-0.5 * arg * arg / (s * 8)); -

+ _sigma->getRes() + ")";
} _

Figure 3. An example set of functions that enable translation for the RooGaussian class. Here, the
former function (function gauss) just represents the Gaussian PDF (not normalized) as C++ code,
and the latter function (function transiate) builds a call to gauss in the form of an std :: string.
These strings are concatenated from all the different classes in a model to form the final C++ code
that represents the full model.

4 Results

We benchmarked fitting a simple RooFit model composed of the sum of two Gaussians and
an exponent term. We benchmarked the regular RooFit fitting pipeline with code-squashing
numerical differentiation (numerical differentiation applied to the generated C++ function)
and code-squashing AD (AD applied to the squashed function).

Fig. 5 showcases the performance comparison results between the different fitting con-
figurations for up to 700 parameters. We fit this simple model with independent parameters
in independent channels, where we arbitrarily scale up the number of channels to increase
the number of parameters for our benchmark. Each channel here contains 2 parameters from

double myGauss (double *params, double const *obs)

{
const double sigma scaled = params[2] * 1.5; “prod: :sigma_scaled(sigma[3.0, 0.01, 10], 1.5)"
const double mu_shifted = params[0] + params[1]; “sum::mu_shifted(mu[0, -10, 10], shift[1.0, -10, 10])~"
const double gauss_Int_x = ADDetail: :gaussianIntegral(-10, 10, mu_shifted, sigma_scalad);
const double gauss = ADDetail::gauss(params[3], mu_shifted, sigma_scaled) ;
const double normGauss = gauss / gauss_Int x; “Gaussian::gauss(x[0, -10, 10], mu_shifted, sigma_acaled]"

return normGauss;

Figure 4. Example code generated from a simple AD-compatible RooFit workspace. Here, the
params and obs represent the model inputs and observables. Moreover, the lines highlighted in
green represent the workspace commands used to generate the model. Each highlighted line is
mapped to the corresponding code it generates after a call to rransiate.

each Gaussian term, 1 from the exponent term and 2 from their relative weights. In total,
each channel contains 7 parameters, and we scale up to 100 channels in the benchmarks from
Fig. 5.

We found that while the vanilla numerical-diff applied to the squashed code is no match
for RooFit’s numerical-diff due to RooFit’s superior caching and bookkeeping mechanisms,
AD performs significantly better, even for a smaller number of parameters. Specifically,
code-squashing AD is up to 18 times faster than regular RooFit for around 700 parameters.
In this benchmark, we report the minimization time excluding the seeding step (the initial
parameter scale estimation step) as this step largely uses numerical-diff in a way that is not
compatible with the AD pipeline. This usually results in very inflated seeding times for the
code-squashing AD configuration. One way to fix these inflated times could be by using an
AD-compatible seeding mechanism in this step. Since the seeding step and its implementa-
tion are largely dependent on MINUIT? [9], the minimizer we used in our benchmarks, it is
also possible to mitigate this issue by using a different minimizer altogether.

Performance Comparision for Minimization Time* =
model used: gauss + gauss + expo
100k
Code-Squashing Numerical-Diff _o
,r“’{mﬂ
5 e .
£ 10k —— e
£ e e
<y — - RooFit Numerical-Diff
] Tk PUE Code-SquashingAD =
g d — .-
E o
§ 100 -—
1] -
= .
o
=
= 10
-
1
35 70 105 140 210 280 350 420 490 560 630 700

No. of Parameters

-# RooFit Numerical-Diff -+ Code-Squashing Numerical-Diff -m Code-Squashing AD

Figure 5. Comparison of the logarithmic time taken for the minimization as the number of pa-
rameters is varied. These times exclude the seed generation time. Tested using Google Benchmark
on the ROOT development branch as of May 2023.

Table 1. Performance comparison breakdown of the 3 evaluated configurations in Fig. 5 for 700

parameters.
Configuration Gradient Time Iterations Minimum
(in ms) Value
RooFit Numerical-Diff 86 136 659552.2917
Code-Squashing Numerical-Diff 380 136 659552.2918
Code-Squashing AD 11 58 659551.9860

To get a deeper understanding of the results and what that means for the total minimiza-
tion process, we compare all 3 of the configurations on 3 different metrics - single gradient
calculation time, total iterations taken to converge, and the final minimized model/function
value. The results of these comparisons are defined in Tab. 1.

Here, while there is not much difference in the number of iterations to converge and
the final minimum value for both the numerical-diff configurations, we notice a signifi-
cant difference between the gradient calculation times. This is majorly because the Code-
Squashing numerical-diff does not employ the many sophisticated caching mechanisms used
in RooFit’s numerical-diff. These caching mechanisms were put in place solely to optimize
the numerical-diff calculation time, and this is reflected well in our analysis.

On the other hand, when comparing RooFit numerical-diff and Code-Squahing AD, we
notice a significant difference in the time taken for gradient calculation. AD is up to 7 times
faster than numerical-diff for a single gradient evaluation. There is also a significant differ-
ence in the number of iterations to converge for both configurations, here we notice that AD
converges much faster and part of the reason why can be that AD is much more numerically
robust and does not suffer from the same numerical errors as in numerical-diff, leading to a
more stable minimization path and hence faster convergence. This is especially true if the tar-
get model has a large number of parameters or contains exponent terms (as in our case) which
are significantly more sensitive to even small errors. However, it is worth mentioning that the
initial minimization setup might also largely affect the number of iterations to converge for
all 3 of the configurations, i.e. for different minimizer starting configurations, it is possible
to get vastly different results for the total iterations to converge. Lastly, minimization done
with AD produces a marginally better minimum value as opposed to numerical-diff, which
produces a similar minimum. This can also be attributed to AD’s overall numerical stability
when compared to numerical-diff and/or the starting minimizer configuration.

5 Conclusion and Future Work

Our work presents an efficient way to translate complex models such that they can be differ-
entiated using AD. We demonstrate that AD can be used to effectively lower the fitting time
for non-trivial models. In our future endeavors, we aim to improve our approach by eliminat-
ing the requirement for numerical derivatives in the minimization process. Currently, RooFit
relies on numerical differentiation during the initial seeding phase of minimization, which
leads to numerous compatibility challenges with AD. Consequently, substituting numerical
derivatives with AD-based derivatives at this stage would facilitate a more seamless integra-
tion of AD. Additionally, we intend to investigate various methods to optimize the gradients
generated by Clad, such as employing CPU parallelization and harnessing the computational
power of GPUs to improve gradient (and possibly model) evaluation times. Moreover, we
want to work towards producing more optimal Sqaushed-Code and reducing the JIT times
for larger models.

Finally, we aim to collaborate with more experiments to help them onboard and integrate
our work into their existing workflows. This will not only allow us to improve our work but
also benefit others in the community.

6 Acknowledgements

This project is supported by the National Science Foundation under Grant OAC-1931408 and
under Cooperative Agreement OAC-1836650.

References

[1] W. Verkerke, D.P. Kirkby, eConf C0303241, MOLT007 (2003), physics/0306116

[2] R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet, L. Moneta, V. Vassilev,
S. Linev, D. Piparo, G. GANIS et al., root-projectfroot: v6.18/02 (2019), https:
//doi.org/10.5281/zenodo.848818

[3] G. Singh, J. Rembser, L. Moneta, D. Lange, V. Vassilev, Automatic Differentiation of
Binned Likelihoods With Roofit and Clad (2023), arXiv:2304.02650

[4] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al, in Advances
in Neural Information Processing Systems 32 (Curran Associates,
Inc., 2019), PP- 8024-8035, http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[5] N.G. M. Sagebaum, T. Albring, ACM Transactions on Mathematical Software (TOMS)
45 (2019)

[6] V. Vassilev, M. Vassilev, A. Penev, L. Moneta, V. llieva, Clad — Automatic Differen-
tiation Using Clang and LLVM (IOP Publishing, 2015), Vol. 608, p. 012055, https:
//iopscience.iop.org/article/10.1088/1742-6596/608/1/012055/pdf

[7] W. Moses, V. Churavy, Instead of Rewriting Foreign Code for Machine Learning, Au-
tomatically Synthesize Fast Gradients, in Advances in Neural Information Processing
Systems, edited by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin (Curran
Associates, Inc., 2020), Vol. 33, pp. 12472-12485, https://proceedings.neurips.
cc/paper/2020/file/9332c513e£44b682e9347822c2e457ac-Paper.pdf

[8] V. Vassilev, P. Canal, A. Naumann, L. Moneta, P. Russo, Cling — The New Inter-
active Interpreter for ROOT 6 (I0P Publishing, 2012), Vol. 396, p. 052071, https:
//iopscience.iop.org/article/10.1088/1742-6596/396/5/052071/pdf

[9] F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

