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Abstract. In the context of High Energy Physics (HEP) analyses the advent
of large-scale combination fits forms an increasing computational challenge for
the underlying software frameworks on which these fits rely. RooFit, being
the central tool for HEP statistical model creation and fitting, intends to ad-
dress this challenge through an efficient and versatile parallelisation framework
on top of which two parallel implementations were developed in the present
research. The first implementation, the parallelisation of the gradient, shows
good scaling behaviour and is sufficiently robust to consistently minimize real
large-scale fits. The latter, the parallelisation of the line search, is still work in
progress for some specific likelihood components but shows promising results
in realistic testcases. Enabling just gradient parallelisation speeds up the full fit
of a recently published Higgs combination from the ATLAS experiment by a
factor of 4.6 with sixteen workers. As the improvements presented in this re-
search are currently publicly available in ROOT 6.28, we invite users to enable
at least gradient parallelisation for robust accelerated fitting with RooFit.

1 Introduction

Twenty years after its inception RooFit [1, 2] has remained the central tool for High Energy
Physics (HEP) model creation and fitting. During this period it has contributed significantly
to many important physics results, not least in the discovery of the Higgs boson in 2012
[3, 4]. Recently though, the physics aims of the large LHC experiments have started to more
prominently include global searches in which many more parameters are constrained simul-
taneously in larger areas of phase space. For example, in a recent ATLAS Higgs combination
analysis [5], thousands of free-floating parameters were fit to data simultaneously in hundreds
of likelihood components. Such fits are, perhaps unsurprisingly, computationally rather de-
manding and as a result very time-consuming. Scientists having to wait for their fits to finish
for hours, which is often the case for recent combination analyses, is suboptimal for the anal-
ysis workflow and might as a result even lead to decreased analysis performance as there is
less time for a trial-and-error approach with prompt evaluation of potential improvements.

In the present research, we intend to address this computational challenge by means of
a robust and versatile parallelisation framework RooFit::MultiProcess which lives under
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the hood of RooFit. This framework was built with generality in mind and as such serves as
the necessary back-end to any future parallelisation efforts within RooFit. Two such efforts
were implemented and are the subject of this paper: the parallelisation of the gradient and the
line search.

The following section (2) briefly introduces the problem and the necessary background on
statistical modeling and minimization. Section 3 subsequently introduces the line search and
gradient parallelisation strategies. In section 4 the results of both optimizations are presented.
And finally section 5 concludes the paper with a brief summary and potential avenues for
future development.

2 Background

In the context of experimental particle physics, hypotheses about the processes that occur
within particle colliders are expressed in terms of statistical models called likelihood func-
tions. In mathematical terms these likelihood functions, L(θ; x), quantify the probability of
the observed data x to occur under the hypothesis encoded by the model and its accompa-
nying parameters θ. As we want to find those model parameters that actually describe the
data best, the goal in general is to maximize L(θ; x) with respect to θ. Furthermore, since
the logarithm has better properties for the purpose of optimization, and since in general most
optimization algorithms actually minimize rather than maximize some function, we take the
negative logarithm of L(θ; x) which we minimize instead.

Since we now expressed the problem of matching hypotheses to data as an ordinary min-
imization task we have the freedom to choose a minimizer accordingly. RooFit uses the
MIGRAD minimization algortihm included in Minuit2 [6, 7], which similarly to RooFit is
also included in the ROOT collection of statistical softwares. MIGRAD iteratively steps to-
wards a minimum, determining at every iteration a step direction by means of a gradient
calculation, and a step length with a line search calculation. While the full algorithm com-
prises many more details, the function evaluations in the line search and gradient calculation
components are most relevant in this context since previous work [8] has shown that these
are the most time-consuming, making them obvious targets for optimization. Conveniently,
both are well-parallelisable, the approach of which is described in the next section.

3 Methods

Computationally, the line search step is dominated by a few likelihood function evaluations.
Two ways of parallelising these function evaluations were implemented in this work. In
the first, the input dataset is split and the likelihood is evaluated for each of the resulting
smaller datasets independently, after which the results are summed together. This is called
event-based splitting since each parallel task essentially comprises the evaluation of a subset
of the full number of events. The second implemented parallelisation strategy is to split the
likelihood into independent sets of components, and then to evaluate these sets of components
in parallel, again summing the results afterwards. This strategy is called component-based
splitting.

The gradient parallelisation on the other hand was implemented by splitting the calcula-
tion of the gradient into sets of constituent partial derivative calculations. Being independent
calculations, these sets of partial derivatives can then be evaluated fully in parallel.
RooFit::MultiProcess serves as the foundational layer for these and any potential

future parallelisation efforts in RooFit. It includes three distinct processes: master, worker,
and queue.



• The master process makes the initial call to RooFit::MultiProcess. It lives for the
entire duration of the minimization. It is responsible for creating a set of parallel tasks
at the beginning of a parallel evaluation, those tasks being for example the sets of partial
derivatives for parallel gradient calculation. Master forks the queue and any necessary
worker processes at the start of a parallel evaluation.

• The queue is responsible for keeping track of and—on worker request—distributing to
workers the set of tasks which the master process has generated at the start of the parallel
evaluation. It is fully agnostic to the minimization problem that is being executed, and
is killed by the master process after no more parallelization is required. Usually this is
directly after a likelihood fit.

• The worker repeatedly requests and subsequently executes tasks that it receives from the
queue process. All workers are killed, along with the queue process, after no more paral-
lelisation is required.

A simplified schematic of the parallel workflow is included in figure 1. Note that for
the sake of illustration the calling code and the master process are indicated as two separate
entities, but that actually the calling code is the master process in the context of RooFit::
MultiProcess.
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Figure 1. Simplified schematic of the main workflow of RooFit::MultiProcess. An explicit dis-
tinction is made between the calling code and the multiprocessing framework, indicating at what stage
the latter takes over the workflow and where it subsequently hands it back to the former.

Since it was found that randomly ordered parallel tasks could form a major bottleneck
for parallel programs with varying task durations the queue was further optimized to handle
custom ordering. This allows the user to specify an order for the tasks to be executed. An
example of a gradient calculation with tasks ordered by duration can be seen in figure 2.
Ordering by duration can significantly improve evaluation times. If, for example, in the
gradient calculation in figure 2 the longest task were evaluated last, the whole parallel gradient
calculation would have taken significantly longer with most workers idling while a single
worker is executing the final task.

4 Results

This section includes results of walltimes for both the gradient and line search parallelisations
as a function of the number of workers. Note that for all of the presented results, the likelihood



Figure 2. Chart indicating time spent by parallel processes in one full gradient calculation with ordered
tasks. The blue bars indicate the duration walltimes of the individual partial derivative calculations
executed by the workers. The master process is most of the time waiting for the workers to finish these
calculations, which is indicated by the long orange bar. In the blank sections where the workers are not
yet executing tasks but the gradient calculation has already begun, the workers are synchronizing their
states following the preceeding line search, which can vary in duration depending on how desynchro-
nized their states were at the beginning of the gradient calculation. Note in particular how due to the
ordering the larger tasks are executed at the beginning, while the smaller tasks are placed more towards
the end.

model and dataset used were those of a recent Higgs combination result from the ATLAS
experiment [5]. This likelihood model contains 3105 free-floating parameters and the dataset
is the LHC’s full run 2 140 fb−1 dataset as collected by the ATLAS experiment.

The results for the scaling of the gradient are included in figure 3. Good scaling be-
haviour is observed for small numbers of workers. When increasing the number of workers
a divergence from ideal scaling can be observed as parallel inefficiencies such as communi-
cation overhead start to play a larger role. Note that for both figures 3 and 4 ideal scaling
is calculated as the walltime of the parallel run with a single worker divided by the number
of workers. The serial walltime is also indicated, which in figure 3 is slightly better than the
parallel walltime with a single worker, as the latter includes the overhead of communication
between the master, worker, and queue processes.

The results for the line search scaling are included in figure 4. Note that for these re-
sults, the H → γγ likelihood components were removed from the full likelihood model since
they include custom p.d.f. (probability density function) types built on top of the RooFit
core library, for which no parallel implementation was developed yet. In the scaling of the
line search overall a similar behaviour to the parallel gradient calculation is observed, where
the measured walltime diverges from the ideal walltime as the number of workers increases.
Scaling performs slightly worse compared to gradient parallelisation, likely because the line
search calculation duration is already relatively short, and thus any constant overheads in-
duced by parallelisation have a larger relative impact. Perhaps surprisingly, the parallel im-
plementation here is faster even for a single worker compared to the serial implementation.
This is likely since caching was also optimized in the parallel implementation.

For the full Higgs combination analysis including all serial parts the speedup with gradi-
ent parallelisation and sixteen workers was measured to be 4.6, reducing the total walltime
from two hours and twelve minutes down to twenty nine minutes. Furthermore, an analysis
of the results showed that 99% of parameters converged to within 0.1% of their estimated
uncertainty with respect to the serial run. All of the 3105 parameters agreed to within 1%. As
such, all variations were fully within the numerical precision around the central values esti-
mated by MIGRAD with default tolerance setting of Expected Distance from the Minimum
(EDM) at 10−3. Note that a full run with both line search and gradient parallelisation was not
done for this research as it would not be representative of a realistic case without the H → γγ



Figure 3. Parallel scaling of the gradient calculation. Data was collected at the annotated markers, with
linear extrapolations inbetween. Note that for two and four workers scaling is close to ideal, but that
the difference between ideal and observed walltime becomes larger with eight and especially sixteen
workers.

Figure 4. Parallel scaling of the line search calculation. Data was collected at the annotated markers,
with linear extrapolations inbetween. Similarly to gradient parallelisation, observed walltimes diverge
from ideal as the number of workers increases.

components. However, assuming the speedup observed in the line search parallelisation can
be achieved alongside gradient parallelisation for the full Higgs combination fit we can rea-
sonably expect a combined speedup of 5.3 with sixteen workers, reducing the total walltime
down to twenty five minutes.



5 Conclusions

This article presented the development and results of a foundational multiprocessing layer
which was built for RooFit, on top of which two parallel implementations were developed for
the line search and gradient calculations. Both implementations showed significant speedup,
with close to ideal scaling for small numbers of workers. The full Higgs combination fit
runtime was reduced from over two hours to under half an hour using only gradient par-
allelisation, as line search parallelisation on this fit is still work in progress. All of the
work included in this research is readily available in ROOT 6.28, and users are invited
to enable it in their likelihood fits by supplying the ’Parallelize’ keyword argument to
RooAbsPdf::fitTo().

A valuable contribution in future research would be the parallelisation of the Hessian
calculation in RooFit, which could be built directly on top of the RooFit::MultiProcess
framework developed in this research. Furthermore, the ordering of parallel tasks by duration
showed significant speedup, but is currently only done manually and therefore requires user
input. In principle, after only a single parallel evaluation the optimal task ordering for that
type of computation can be inferred from walltimes collected on the fly. This automated way
of ideally ordering parallel tasks could provide another valuable future development.
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