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Abstract. The usage of Deep Neural Networks (DNNs) as multi-classifiers is
widespread in modern HEP analyses. In standard categorisation methods, the
high-dimensional output of the DNN is often reduced to a one-dimensional dis-
tribution by exclusively passing the information about the highest class score to
the statistical inference method. Correlations to other classes are hereby omit-
ted. Moreover, in common statistical inference tools, the classification values
need to be binned, which relies on the researcher’s expertise and is often non-
trivial. To overcome the challenge of binning multiple dimensions and preserv-
ing the correlations of the event-related classification information, we perform
K-means clustering on the high-dimensional DNN output to create bins without
marginalising any axes. We evaluate our method in the context of a simulated
cross section measurement at the CMS experiment, showing an increased ex-
pected sensitivity over the standard binning approach.

1 Introduction

At the Large Hadron Collider (LHC) near Geneva, the standard model of particle physics is
tested by measuring physics processes such as the production of the Higgs boson in different
final states and production modes. A major challenge in these searches is separating the vast
number of background processes from the desired signal process, especially for processes
with a low cross section. To extract the signal successfully, multivariate methods like Boosted
Decision Trees and Deep Neural Networks (DNNs) are used, which have become standard
tools within the high energy physics community. However, the utilization of DNNs is not
straightforward, since many analyses rely on binned likelihood fits that cannot be inferred
from a raw network output. For this reason, the most common strategy is using the maximum
score of the DNN prediction as the fit-variable, while discarding the remaining values of the
outputs nodes. This variable is then binned into a summary statistic with a strategy chosen by
the analyst. We present a novel approach to utilize the network’s output in a more general ap-
proach by performing an unsupervised K-Means-clustering [2][3][4] on an multi-dimensional
classifier output. With this simple approach, we determine bins in a high-dimensional vector
space, without suffering under the curse of dimensionality or marginalizing over any specific
axes. We present the resulting distribution with a visualisation of the 8-dimensional cluster
center coordinates as well as an improvement of the 95% Confidence Level (C.L.) limit for a
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Higgsstrahlung analysis at the Compact Muon Solenoid [1] (CMS) experiment. All studies
are performed with Monte Carlo (MC) simulation for the 2017 data taking period.

2 Physics Process Classification and Assignment Strategy

A common signal-search analysis approach is to first perform a basic phase-space selection
by specifying desired physics objects such as electrons or b-tagged jets and then applying
kinematic requirements on transverse momentum, angles between objects or more complex
connections. On this reduced number of samples a DNN based classifier is trained to dif-
ferentiate between the signal process and multiple background processes, being trained on
MC-simulation. The network’s output is a probability for its confidence of each event be-
longing to one of the process categories. To perform a likelihood fit on this distribution,
each event can only be once in the summary statistics to avoid double counting. This is most
commonly done by taking the maximum score of the network output values and aggregating
the events in N different histograms. This assignment is straight forward but has the disad-
vantage that only one dimension of the networks output is utilized and all information of the
remaining axes is neglected. While this is not as important for high confidence predictions,
especially events that are predicted with equally high probabilities between several processes
lose a lot of information in this method.

In this publication, all figures are taken from a vector boson associated Higgs production
analysis (VH) performed at the CMS experiment in the H → bb and Z → e+e−/µ+µ−, W →
eνe/µνµ final states. In the standard approach, the analysis was further split into subcategories,
corresponding to the combinations of number of leptons and b-tagged jets. Figure 1 shows
the distributions, resulting from the described event assignment in the 1µ and 1 b-tagged jet
category in the W + jets and VH process categories. In total, eight classifier categories are
used, consisting of the signal (VH), tt̄+jets (TT), Drell-Yan (DY), multibosonic (VV(V)),
QCD, W+jets and single top (ST) processes.

Figure 1. DNN scores for the W+jets and VH categories in the 1 µ + 1 b-tagged jet (resolved, i.e.
AK4) category. Each event is assigned to the category of its highest DNN prediction and the resulting
histograms are then binned separately.



3 Event clustering as binning algorithm

3.1 Concept

We present a new approach to exploit as much information of the DNN’s predictions as
possible. Instead of taking the maximum score, we infer the bins directly in the 8-dimensional
vector space. Standard grid-like binning approaches in multiple dimensions are not capable of
doing that since they suffer under the curse of dimensionality and bin yields would diminish
because of low densities. Instead, we deploy a K-Means-clustering algorithm on the classifier
output to determine k clusters. These clusters are then utilized to derive a summary statistic
for a likelihood fit. K-Means fits this applicaion well, since it runs completely unsupervised
and has only the cluster number K as a tuneable hyperparameter.

3.2 Clustering

The K-Means-algorithm is an unsupervised algorithm that is guaranteed to converge to a
solution. The algorithm is explained in pseudocode in Algorithm 1 and starts by initializing
a set of k starting centers c j in the given N-dimensions. Next, every point xi is assigned to its
closest cluster center c j. Then, new centers are determined by taking all the points for each
center c j and calculating their mean positions. This procedure is done for as many iterations
until the cluster centers only move below a certain small ϵ or until a set maximum of iterations
mmax is reached. In our studies a maximum number of 100 iterations was sufficient.

Data: n events xi

Result: k bins c j with n j events

initialize k cluster centers c j randomly
for mmax iterations do

for all xi do
Assign datapoint xi to closest center c j by L2 norm
c j ← xi with j = argmin(∥xi − c j∥,∀ j ∈ k)

end
for all c j do

Compute new cluster centers
c j = mean(xi,∀xi ∈ c j)

end
end
All c j are the final bins with the events xi ∈ c j belonging to them.

Algorithm 1: KMeans clustering as binning

We use the K-Means implementation by scikit-learn [5] in the mini-batch variant. This
speeds up the iterative process by using randomly shuffled batches of data-points to deter-
mine the centers. In our studies, the batch-variant with a batch-size of 10k points ended up
producing comparable results to the full variant but saving on computation time.



4 Results
This section presents the results of applying the clustering algorithm as a binning in the
VH-analysis. We further visualise the 8-dimensional coordinates of the high-signal cluster
centers and check if a bias is introduced by the MC-dataset. Last, we probe the influence
of the analysis sensitivity by computing the upper 95% C.L. limits on the signal strength
modifier.

4.1 Distributions

Figure 2 show the result of performing a K-Means clustering on the DNN-predictions with
k = 200 and k = 500 clusters respectively. The cluster index is arbitrary and only depends on
the random initialization. Thus, the bins are sorted by absolute signal (VH) yield to improve
visual interpretability. The distribution shows several interesting attributes. The bin yields
fluctuate by approximately one order of magnitude up and down. There are no bins with fewer
than 103 expected events for the 200 clusters case and most bins contain between 104 and 105

events. This is an important property, since bins with very few events can cause numerical
problems in performing a likelihood fit. In addition, the signal-curve in red shows a steady
rise to the higher cluster numbers with a sharper rise in the top 20 clusters that is also visible
in the signal over background ratio S/

√
B. Here, an increased signal to background ratio is

observed, gaining sensitivity to the VH signal. The dominating background is the tt̄ process,
shown in the green color but there exist bins that are not dominated by the tt̄ background but
contain for example more W + jets or Drell-Yan events. This is an important property, as
these bins may help to control these individual backgrounds during a likelihood fit.
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Figure 2. The distributions for the k = 200 (left) and k = 500 (right) clustering are shown with their
signal (S) to square root of background (B) ratio. Both distributions are sorted by total signal yield in
the bins for convenience in the visualisation. Both plots show a similar general distribution with the
higher cluster count having a higher resolution.

Further, the distributions of k = 200 and k = 500 show very similar shapes, just with a
different resolution. The clustering is not dependent on the random initialization and shows
the same behaviour across different clustering numbers k.

4.2 Cluster visualisation

For the common maximum-score approach, the representation of the bins is straightforward.
It is known which axis from the 8d output is used and whether the event lies in a high-



(score→ 1) or low-confidence (score→ 0) region. With the clustering approach, the bins are
harder to interpet because of their 8d location. As stated, the cluster number is an arbitrary
value and the sorting provides some visual convenience. Especially the very high signal yield
bins are of interest since these have a major contribution to the analysis sensitivity. The top 25
clusters are displayed in figure 3 for the k = 200 and k = 500 cases. Despite using more than
twice the number of clusters, very similar characteristics are visible, such as a high signal to
background ratio bin at the fourth position from the right.
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Figure 3. The 25 bins (clusters) with the highest signal yield are shown for the k = 200 (left) and
k = 500 (right) clustering. Similar features are visible in both histograms like a bin with especially high
S/
√

B at fourth position from the right side.
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Figure 4. The radar plots are a visualisation of the cluster centers position with the highest (left) and
fourth highest (right) signal yield for k = 200. The lines from the origin to the outer bound represents
an axis in the multidimensional space. Each point then indicates the value of the point on the respective
axis. The #1 cluster is located in the 8d space close to the background predictions for the tt̄ and multi-
boson (VV(V)) backgrounds, whereas the #4 cluster lies in the high confidence signal prediction region.

In order to further understand the clustering, we visualise the cluster centers in the radar
plot in figures 4,5 for the k = 200 clustering. Here, the eight dimensions correspond to the



eight axes, with the process label at the outer end. In figure 4, the #1 cluster and #4 cluster
from the right are shown. The value on the specific axes shows the location in the 8d space
of the cluster center. The #1 cluster shows a different composition than the #4 cluster. The
#1 cluster has the largest contribution of the tt̄ and multi-boson (VV(V)) backgrounds. This
can be contradictory to the expectation that the most signal should be in a high confidence
DNN-prediction. This cluster represents the events that cannot be classified correctly but are
mistaken as tt̄ or VV(V). In contrast to this, the #4 cluster center has the highest score in
the VH-signal axis with DY being the largest signal contribution. It has the highest S/

√
B

ratio amongst all bins, while having a smaller total event yield than the others. These events
correspond to a high signal confidence.
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Figure 5. The radar plots are a visualisation of the cluster centers position with the second (left) and
third (right) highest signal yield. These cluster centers do not have an as strong confidence prediction
as the centers of figure 4 but have a peak in the signal axis as well as the DY/QCD axis.

The #2 and #3 clusters, depicted in figure 5, show a much smaller surface in the radar
plot. Only the output scores of the DNN are normalized to 1; this does not need to be the
case for the cluster centers, hence the visual difference to the other radar plots. The cluster
centers show a peak in the signal VH-process and in the DY/QCD backgrounds axes. This
corresponds to events that have a low confidence in the classification and thus small scores
for each process.

4.3 Bias Test

Because the binning of the final summary statistic is determined on the used simulated events
themselves, one has to check if a bias is introduced by the methodology. To test this, the
MC-events are split into a training and test set with each 50% of the data. The clustering is
determined on the training set and then evaluated on the training and test set separately. This
is benchmarked by computing the expected 95% C.L. limit for the signal strength of the signal
process. As uncertainties, the background normalization as well as statistical uncertainties
from the event yield and MC-statistics uncertainties are considered. The limits are normalized
to one for each training set, since the absolute sensitivity of the analysis is not of interest for
benchmarking the methodology.

Figure 6 shows a comparison of the 95% C.L. limits for k = 100, k = 250 and k = 500
clusters. It is apparent that the value of the test set barely deviates from the biased training



set. Especially within the margin of the error bars, one can claim that this method is robust
towards being biased to the training set and safe to be used on the MC-simulation.

Figure 6. A bias test is performed by split-
ting the MC events into a training and test set.
The clustering is performed on the training set
solely and then evaluated on the training and test
set separately by computing the upper 95% C.L.
limit on the signal strength. The markers show
the resulting limit for the two sets with their 1σ
and 2σ confidence interval respectively. The test
shows no bias towards the training set and thus
is not strongly dependent on it.

Figure 7. The sensitivity improvement of the
clustering is tested by computing the upper 95%
C.L. limit for different number of clusters. The
results are compared to the standard approach,
shown in the dashed line with the 1σ (2σ) confi-
dence level in the green (yellow) band. The clus-
tering improves on the standard binning with an
improved limit with increasing clustering num-
ber. The improvement saturates around k = 250
clusters.

4.4 Limit improvement

An important test for a new algorithm within an analysis is probing its impact on the sensi-
tivity of the analysis. As for the bias test, this is done by computing the expected upper 95%
C.L. limits on the signal strength modifier. The limits are computed for different values of
the number of clusters k. The baseline is the standard maximum score approach. This stan-
dard binning could be improved itself by adjusting the bin sizes but the clustering approach
includes no tuneable hyperparameters besides the cluster number k. Thus, to give a basic in-
sight into its capabilities, this serves as a sufficient first comparison. Figure 7 shows the 95%
C.L. limits for the different cluster numbers with the 1σ (2σ) intervals respectively, as well as
a comparison with the standard approach. It demonstrates that the clustering approach yields
a better limit than the standard approach with a decreasing limit up to ∼ 250 clusters. The
value for the limit then saturates.

5 Conclusion

The use of a Deep Neural Network (DNN) based multi-process classification has become
standard for many LHC analyses. However, using the maximum score of the DNN pre-
dictions to create a summary statistic does not utilize all available information. In our ap-
proach, we utilize the K-Means clustering algorithm to directly determine bins in the high-
dimensional DNN output space, omitting the marginalization over any axes. The clustering
shows to be robust in a bias-test performed on MC events by performing a training and test
split. The visualisation by radar plots gives an insight into the clusters with very high signal
yield and helps developing more understanding for this method. Last, the upper 95% C.L.



limits show an improvement of ∼ 60% with respect to the standard binning approach, where
the limit saturates at k = 250 clusters.
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