
Data Management Package for the novel data delivery sys-
tem, ServiceX, and Applications to various physics analy-
sis workflows

KyungEon Choi1,∗ and Peter Onyisi1

1The University of Texas at Austin

Abstract. Recent developments of HEP software allow novel approaches to
physics analysis workflows. The novel data delivery system, ServiceX, can be
very effective when accessing a fraction of large datasets at remote grid sites.
ServiceX can deliver user-selected columns with filtering and run at scale. We
introduce the ServiceX data management package, ServiceX DataBinder, for
easy manipulations of ServiceX delivery requests and delivered data using a
single configuration file. We show various practical use cases within analysis
pipelines that range from a data delivery of a few columns for machine learning
study to a data delivery for full-scale physics analysis.

1 Introduction

ServiceX [1, 2] is a novel data delivery service that has been developed in the area of Data
Organization, Management and Access (DOMA) of the Institute of Research and Innovation
in Software for High Energy Physics (IRIS-HEP) [3]. It features quick and easy access to
large data sets at remote locations by running transformation on a Kubernetes cluster at scale
and then delivers user-selected columns with filtering. ServiceX data delivery requests are
made via a REST interface. Figure 1 shows a schematic workflow of ServiceX requests to
data delivery.

Data center Kubernetes cluster Local Area Network

ServiceX requests

ServiceX

Figure 1. A schematic of ServiceX workflow.

The ServiceX client library [4] is the python library for users to interact with ServiceX. It
provides essential features such as submitting a ServiceX data delivery request, downloading
∗e-mail: kyungeonchoi@utexas.edu



transformed outputs, handling of ServiceX endpoint access token and local data cache. The
python package, servicex-databinder [5], presented in this paper was motivated to pro-
vide a better user experience than the ServiceX client library, especially when dealing with
many ServiceX requests as typical high-energy physics analyses.

2 Data Management Package for ServiceX

The primary feature of servicex-databinder is a configuration file which includes
general settings and details of each ServiceX request. It is also effortless to run a
servicex-databinder configuration file and get data delivered from remote as specified
in the configuration file.

2.1 Configuration file for servicex-databinder

Figure 2. An example servicex-databinder configuration file.



A configuration file is written in YAML format. Figure 2 shows an example configuration
file which contains many of the available options of servicex-databinder. General and
Sample are mandatory blocks and Definition block is optional.
General block has two mandatory fields, ServiceXName and OutputFormat.

ServiceXName is the ServiceX endpoint name specified in the user’s ServiceX access file
[6]. OutputFormat can be either root for ROOT TTree format or parquet for Apache
Parquet format. Transformer is the field to specify the default transformer for all samples in
the configuration. A user can select either uproot or python or atlasr21 depending on the
input data format and the query language. OutputDirectory is the path to deliver files from
ServiceX. WriteOutputDict is the name of output yaml file containing output file paths.
This file is usually handed over to a subsequent analysis framework such as coffea. A user
can also specify a field Delivery, not shown in the example configuration, to choose one
of three delivery options. LocalPath is the default value paired with OutputDirectory.
or LocalCache to download from ServiceX but do not copy to the target directory speci-
fied in the OutputDirectory. or ObjectStore not to download any file from ServiceX
immediately but only download S3 URIs for later access or direct streaming.
Sample block specifies details of each sample. Each sample requires to have a unique

Name and can have different combinations of fields depending on the input data format, input
data protocol, query language. The first sample in Figure 2, Signal, has a list of input
datasets as Rucio [7] dataset ID, and each input dataset is separated by comma. Since the
default transformer is set to uproot in the General block, the field Tree needs to be provided
for the inputs. FuncADL [8] is the query language to filter events and select branches from
the input datasets. The second sample, Background1, has an input file read from CERN
EOS space using XRootD protocol. Although the input data protocol of the second sample
differs from the first sample, the input data format is identical to the first sample. Thus, the
same transformer is used and Tree needs to be specified for the input of second sample.
The TCut syntax [9] can be also used as a query language with Filter and Columns fields.
Filter for TCut syntax cut and Columns for the requested branches from the input dataset
of given tree. One caveat of TCut as query language is Filter works only for scalar type
of branches. The third sample, Background2, has a field Transformer which overwrites
the default transformer. atlas21 transformer is for the input format of ATLAS xAOD. The
input files are accessed using Rucio protocol as the first sample but the data format is now
ATLAS xAOD. The last sample in the example configuration is Background3. This sample
does not have any field on input data format or data protocol because it simply binds local
files into a sample.
Definition block keeps a configuration file short and tidy for a better readability.

Every value in the configuration starts with DEF_ are replaced by the ones defined in the
Definition block.

2.2 Running servicex-databinder

The servicex-databinder package is published at PyPI, and it can be easily installed
using the following command.

1 python -m pip install servicex-databinder

Figure 3 shows how to run servicex-databinder in a Jupyter notebook. The first cell
imports the python package. The second cell loads the configuration file. It performs ba-
sic syntax checks of configuration file. It also recognize how many samples defined in the
configuration file and how many ServiceX requests will be submitted. The third cell submits



Figure 3. An example of running servicex-databinder in a Jupyter notebook.

ServiceX requests and shows two progress bars for each sample; one for transformation hap-
pening on the ServiceX and the other one for the status of download. Three ServiceX requests
correspond to the three Rucio datasets in the example configuration file shown in Figure 2. All
ServiceX transformations and downloads are running in parallel and asynchronously. Each
sample is delivered to the final target path as soon as downloaded. Transformation status can
be also checked from the web dashboard of ServiceX endpoint shown at the beginning of the
third cell. The object out in the third cell is the python dictionary containing the file list of
each sample. A user can perform subsequent analysis in the Jupyter notebook or can feed
that into analysis framework such as coffea.

3 Use-cases in Physics Analysis Workflows

In a case of when a user wants to perform a machine learning study, and needs just few
branches from all signal samples and background samples on the grid. A user can retrieve
the data with less effort using servicex-databinder than by submitting grid jobs. The
example configuration in Figure 2 accesses about 300 GB of data on the grid using ServiceX,
and delivers few columns to my laptop in about 1 minute.

A more interesting use case is when ServiceX plays data reduction and delivery roles
in a full scale physics analysis as shown in Figure 4. An example ATLAS Run-2 physics
analysis uses more than 600 Rucio datasets which amount to more than one TBytes. An
servicex-databinder configuration file defines all samples and preselections applied to
each sample. Running servicex-databinder for this configuration spawns 140 Uproot
transformer pods and automatically scale up/down to extract up to 70 columns from 130 trees
out of input datasets. Transformation took about 30 minutes with about 400 transformer pods
on average. Total wall time including transformation and download is about 50 minutes to the
University of Chicago Analysis Facility. Downloads take longer when outputs are delivered
to the local machine at University of Texas at Austin.



●

Top framework

Figure 4. An example use case of ServiceX in a ATLAS Run-2 analysis workflow. Delivered data
by ServiceX is processed using coffea framework and machine learning inference is calculated using
NVidia Trition. Identical servicex-databinder configuration file to deliver data at coffea-casa at the
University of Chicago Analysis Facility and local machine at the University of Texas at Austin.

4 Summary and Outlook

servicex-databinder provides a straightforward user experience when dealing with mul-
tiple and complicated ServiceX requests. A single configuration file which manages all input
datasets and preselections and binds them together in one place allows consistent control of
an analysis.

The current version of servicex-databinder is primarily for the handling of ServiceX
requests and datasets. A more generic data management package is envisioned to include a
more extensive information of an physics analysis.

References

[1] B. Galewsky, R. Gardner, L. Gray, M. Neubauer, J. Pivarski, M. Proffitt, I. Vukotic, G.
Watts, and M. Weinberg, EPJ Web of Conferences 245, 04043 (2020)

[2] K. Choi, A. Eckart, B. Galewsky, R. Gardner, M. Neubauer, P. Onyisi, M. Proffitt, I.
Vukotic and G. Watts, EPJ Web of Conferences 251, 02053 (2021)

[3] IRIS-HEP, https://iris-hep.org (2023), accessed: 2023-09-20
[4] ServiceX frontend (version 2.6.2), https://github.com/ssl-hep/ServiceX_frontend (2023),

accessed: 2023-09-20
[5] ServiceX DataBinder (version 0.5.0),

https://github.com/kyungeonchoi/ServiceXDataBinder (2023), accessed: 2023-09-20
[6] ServiceX documentation,

https://servicex.readthedocs.io/en/latest/user/getting-started/ (2023),
accessed: 2023-09-20

[7] Rucio’s documentation, https://rucio.cern.ch/documentation/ (2023),
accessed: 2023-09-20



[8] Functional ADL, https://iris-hep.org/projects/func-adl.html (2023),
accessed: 2023-09-21

[9] ROOT TCut Class Reference, https://root.cern.ch/doc/master/classTCut.html (2023),
accessed: 2023-09-21


