
High-performance end-user analysis in pure Julia program-
ming language

Jerry Ling1,∗ and Tamás Gál2,∗∗

1Harvard University
2Erlangen Centre for Astroparticle Physics

Abstract. We present tools for high-performance analysis written in pure Julia,
a just-in-time (JIT) compiled dynamic programming language with a high-level
syntax and performance. The packages we present center around UnROOT.jl,
a pure Julia ROOT file I/O package that is optimized for speed, lazy reading,
flexibility and thread safety.
We discuss what affects performance in Julia, the challenges, and their solutions
during the development of UnROOT.jl. We highlight type stability as a chal-
lenge and discuss its implication whenever any “compilation” happens (incl.
Numba, Jax, C++) as well as Julia’s specific ones.
We demonstrate the performance and “easy to use” claim by comparing
UnROOT.jl against popular alternatives (RDataFrame, Uproot, etc.) in
medium-size realistic benchmarks, comparing both performance and code com-
plexity.
Finally, we also showcase real ATLAS analysis workflows both locally and
on an HPC system, highlighting the composability of UnROOT.jl with multi-
thread/process and out-of-core distributed computing libraries.

1 Introduction

There are many reasons why the Julia programming language is a good fit for scientific com-
puting in general, but also specifically for high-energy physics (HEP). In this paper, we focus
on the aspects of Julia that impact end-user analysis workflows such as performance, multi-
threading, while skip other features such as reproducibility, binary dependencies handling
etc.

To read about complete discussions with comparisons and case studies on Julia’s potential
adoption in wide HEP community, we refer readers to the recent white paper [1].

2 Paper structure

This paper is structured in a user-driven way: in each of the two sections, we explore what
end-users want in a typical HEP data analysis task, and see how Julia the ecosystem and the
UnROOT.jl package we developed meet those needs.

∗e-mail: jling@g.harvard.edu
∗∗e-mail: tamas.gal@fau.de



In the first section, we focus on single-node computing, since HEP end-user analysis often
only involves naive parallelism. We briefly explore Julia’s compilation model to explain why
Julia can be "easy to write" while having "no performance compromise".

In the second section, we demonstrate how the same code can be re-used easily to scale
to multi-node high-performance computing/high-throughput computing (HPC/HTC) infras-
tructures that are already in place for HEP applications (e.g. HTCondor).

3 Source of Julia’s performance and UnROOT.jl

We commonly think performance and expressiveness as a trade-off when it comes to pro-
gramming languages. Typical languages we use to achieve full hardware potential includes
languages such as C++; while less verbose and thus easier to write languages such as Python
are less performant.

One of the fundamental reasons contributing to both performance and apparent verbosity
lies in the type information available to the compiler. The more information the compiler has,
the better it can emit most optimized machine instructions given user-defined tasks.1

In C++, the type information (e.g. variable types, function arguments types, function
return types) are usually spelled out in the source code, which increases verbosity, but serves
as a sure way to pass the information to the compiler.

Julia[2], as a language designed around JIT compilation, employs “specialized compila-
tion” [3] to get the benefits from both worlds: speed and ease of use. We look at a simple
example to demonstrate how Julia’s compilation model works:

1 julia> function mysum(ary)
2 s = zero(eltype(ary))
3 for x in ary
4 s += x
5 end
6 return s
7 end

This function can technically be passed any argument, as long as function calls such as
eltype are also well-defined for the input variable. When looking at this code alone, it’s
hard to guess how Julia can achieve peak performance, for example, how does it know what
CPU instruction the plus (+) should correspond to?

The trick is to compile a specialized instance of the function, for different types of input
arguments. Because Julia uses JIT compilation, it’s easy to see the compilation in action.
After we defined the function but before it was ever called, we can see there are 0 instances
compiled:

1 julia> using MethodAnalysis
2

3 julia> methodinstances(mysum)
4 [] # collection of compiled instances is empty

Now, if we execute the function first on a collection of integers and then on a collection
of floats, you can see new instances of the function gradually being compiled:

1Python’s reference implementation uses an interpreter which makes the comparison less direct but the overall
idea stands even if you switch to Cython, PyPy, or Numba.



1 julia> mysum([1, 2, 3])
2 6
3

4 julia> methodinstances(mysum)
5 1-element:
6 MethodInstance for mysum(::Vector{Int64})
7

8 julia> mysum([1.0, 2.0, 3.0])
9 6.0

10

11 julia> methodinstances(mysum)
12 2-element:
13 MethodInstance for mysum(::Vector{Int64})
14 MethodInstance for mysum(::Vector{Float64})

The compiled instance will get cached and won’t add extra cost the next time this function
is called on known input types. This is the main mechanism in Julia to achieve both speed
and expressiveness.

4 UnROOT.jl performance and multi-threading

Given the high-throughput nature of most end-user analysis computing, a big common bot-
tleneck is processing the data stored in .ROOT files (specifically, the TTree container, and in
the future, RNTuple container).

We developed UnROOT.jl [4] to address this demand. UnROOT.jl is a pure Julia ROOT
file reader that focuses on ease of use, speed, and thread safety. Here is a simple example of
an event loop in Julia:

1 using UnROOT
2 tree = LazyTree("./data.root", "Events")
3 for evt in tree
4 muon_HT = sum(evt.Muon_pt)
5 if muon_HT < 200
6 continue
7 end
8 #...
9 end

Following our discussion on the relationship between type information and performance,
we can see that the compiler might have difficulties inferring the type of evt.Muon_pt when
trying to compile the loop body. The workaround is to encode the name and element type
of the branch in the type of evt. Here is an example of name-type encoding in the built-in
NamedTuple:

1 julia> x = (a=1, b=2)
2

3 julia> typeof(x)
4 NamedTuple{(:a, :b), Tuple{Int64, Int64}}



This is done by UnROOT.jl at parsing time, end-users can simply write the for loop
without any type annotation.
UnROOT.jl is also very amenable to multi-threading:

1 using UnROOT
2 tree = LazyTree("./data.root", "Events")
3 Threads.@threads for evt in tree
4 muon_HT = sum(evt.Muon_pt)
5 if muon_HT < 200
6 continue
7 end
8 #...
9 end

The built-in @threads macro will automatically distribute the events in true memory-
shared multi-threading fashion (think OpenMP). End-users, however, are not confined to
this primitive parallel construct, they can use any multi-threading library they like, such as
ThreadsX.jl2.

Figure 1. Sythetic benchmark of UnROOT.jl with source code available.

Finally, it is worth mentioning that the alternative “vector-style” operation is still available
since each column of the LazyTree conforms with AbstractVector interface.

5 Out-of-core parallel computing

Although Julia’s multi-threading is very powerful, the throughput of a single node is still
limited, and users often encounter difficulties when trying to scale their analysis to a cluster of
nodes. The usual problems are: 1) debugging different node architectures and environments;
2) long turn-around time for job submission when debugging.

Here we demonstrate how Julia’s built-in out-of-core parallel computing library can be
used even in a very primitive setup to scale an interactive analysis to a cluster of nodes.

First, adding workers and execute arbitrary code on them is as simple as:

2https://github.com/tkf/ThreadsX.jl
‡https://github.com/Moelf/UnROOT_RDataFrame_MiniBenchmark



1 # [local code working!]
2 julia> using ClusterManagers, Distributed, Revise
3

4 julia> addprocs(HTCManager(4))
5 # Waiting for 4 workers: 1 2 3 4 .
6

7 julia> @fetchfrom 1 gethostname()
8 "login02.af.uchicago.edu" # <--- user's login node
9

10 julia> @fetchfrom 2 gethostname()
11 "c028.af.uchicago.edu" # <--- a HTCondor node

Here we have access to the HTCondor cluster at University of Chicago, but the same idea
applies to any HTCondor setup. And ClusterManagers.jl also supports other cluster managers
such as Slurm.

Now the user can load their analysis code everywhere at once:

1 julia> @everywhere using WVZAnalysis
2

3 julia> run_analysis(..)

Inside the run_analysis function, we should assume that users used functions such
as pmap() etc. which will automatically utilize all the workers that can be reached by
Distributed.workers(). Furthermore, in the event that user needs to debug their anal-
ysis, they can simply edit the code, and the changes will be propagated to all the workers by
Revise.jl, and only the changed code path will be recompiled.

It is hard to find a dedicated cluster to conduct a full benchmark, but preliminary tests
show that the scaling is linear in the number of nodes since the analysis is embarrassingly
parallel:

Figure 2. Scaling as a function of number of nodes. Expected to be linear, falling off due to I/O at
cluster site.



6 Conclusion

In this paper, we briefly demonstrated Julia’s compilation model and why it hits the sweet
spot between ease of use and performance. We also demonstrated how UnROOT.jl is imple-
mented to maximally utilize Julia’s compilation model in order to achieve high performance
for typical HEP end-user analyses. We also demonstrated how the same code can be re-used
to scale to a cluster in a real analysis workflow, which is currently being used by one of the
authors in ATLAS analysis.

References

[1] J. Eschle, T. Gal, M. Giordano, P. Gras, B. Hegner, L. Heinrich, U.H. Acosta, S. Kluth,
J. Ling, P. Mato et al., Potential of the julia programming language for high energy
physics computing (2023), 2306.03675

[2] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, SIAM review 59, 65 (2017)
[3] A. Pelenitsyn, J. Belyakova, B. Chung, R. Tate, J. Vitek, Proc. ACM Program. Lang. 5

(2021)
[4] T. Gál, J. Ling, N. Amin, UnROOT: an I/O library for the CERN ROOT file format written

in Julia (2021), https://github.com/JuliaHEP/UnROOT.jl/


