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Abstract. After using ROOT’s TTree I/O subsystem for over two decades and
storing more than an exabyte of compressed High Energy Physics (HEP) data,
advances in technology have motivated a complete redesign, RNTuple, which
breaks backward-compatibility to take better advantage of these storage options.
The RNTuple I/O subsystem has been designed to address performance bottle-
necks and other shortcomings of TTree. Specifically, RNTuple comes with an
updated, more compact binary data format that can be stored both in ROOT
files and natively in object stores. It is designed for modern storage hardware
(e.g. high-throughput low-latency NVMe SSDs), and provides robust and easy
to use interfaces. The binary format of RNTuple is scheduled to become produc-
tion grade in 2024, and recently has become mature enough to start exploring
the integration into software used by HEP experiments. In this contribution,
we discuss the developments to support the features as required by the ATLAS
analysis Event Data Model (EDM) in RNTuple, which will enable its integra-
tion into the Athena software framework. With these developments in place, we
evaluate the performance of the current most recent versions of RNTuple-based
ATLAS data sets and compare this to that of TTree.

1 Introduction

With the High-Luminosity LHC (HL-LHC), ATLAS expects to collect up to ten times more
data than it did during the first three runs [1]. Major efforts are required to ensure that compute
resources are able to keep up with this increase in data volume. Currently, physics data from
all four LHC experiments, including ATLAS, is stored and accessed using ROOT’s TTree
I/O subsystem [2]. The TTree data format is specifically optimised for High Energy Physics
(HEP) data and allows for columnar storage of both plain data (i.e. numerical values) as
well as complex (custom) C++ objects and collections. However, it is not designed to make
optimal use of modern data storage systems. In addition, both its implementation and API
show shortcomings when it comes to safe multithreaded and GPU-driven analysis. Driven by
the experiences with TTree and inspired by concepts from state-of-the-art industry standards,
RNTuple [3] is currently being developed as a backwards-incompatible successor to TTree,
and is anticipated to be ready for production use in the HL-LHC era. Its binary data format is
designed to be compatible with ROOT’s existing I/O facilities, as well as be able to natively
target object stores such as Intel DAOS [4] or Amazon S3. In addition, RNTuple will come
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with robust interfaces that should to be easy to use correctly, and support multithreaded and
GPU-driven usage.

Initial performance evaluations have shown promising results compared to both TTree
and industry standards [3, 5]. The logical next step of development involves ensuring
RNTuple can be integrated into existing experiment workflows as seamlessly as possible,
without significantly compromising on the previously observed performance gains. In this
contribution, we focus on the integration of RNTuple into the ATLAS software framework,
Athena [6]. In section 2, we present the features that have been added to RNTuple to support
the Analysis Object Data (AOD) format and the Derived AOD formats, DAOD_PHYS and
DAOD_PHYSLITE [7] as part of the analysis Event Data Model (EDM) used by ATLAS,
xAOD [8]. With these features in place, we compare RNTuple with TTree for DAOD_PHYS
(which is the current recommended analysis format in ATLAS) and report on these results
in section 3. Finally, we discuss these results and potential next steps in section 4.

2 Supporting the ATLAS EDM in RNTuple

To make RNTuple compatible with the ATLAS EDM and to be able to integrate RNTuple into
Athena, a number of new features have been added, which will be discussed in this section.

2.1 Custom collections

xAOD is in large part based on the DataVector class and types derived from it. DataVector
is an Athena-specific custom container behaving like a vector of objects, but implemented as
a vector of pointers to these objects, which is advantageous when representing a collection
of objects as a collection of their base type. To be able to perform I/O operations on such
user-defined collections, in particular in-memory object creation when reading from storage,
ROOT provides an abstract interface that allows for creation of so-called collection proxies.
With TTree, every (custom) collection class has to have an associated collection proxy.

So far, RNTuple has only supported collections where the elements are contiguous in
memory, such as std::vector and ROOT’s own ROOT::RVec [9], which makes it pos-
sible to avoid the use of collection proxies. To properly be able to (de)serialize custom
collections for which we cannot predict the memory location of their elements, support
for collection proxies in RNTuple has been added. This enables the reading and writing
of DataVectors, but more generally any non-associative collection that provides a collec-
tion proxy. The on-disk format of collections with an associated collection proxy is identical
to that of std::vector fields, with a mother field that stores the index offsets of each collec-
tion and a child field that holds the data elements. As a consequence, currently only proxies
for custom non-associative collections are supported.

2.2 Support for std::set fields

While not present DAOD_PHYS(LITE), the full ATLAS AOD (i.e. before derivation, used
as input to produce DAOD_PHYS(LITE)) also contains objects of the std::set type. To
ensure that the EDM at any point in the production workflow can be written to and read
from by RNTuple, support for std::set-type fields (and nestings thereof) has been added
to RNTuple. While the C++ standard defines the std::set as an associative container, the
keys in a set are equal to their value. This allows for using the same on-disk layout as for
non-associative collections, which in turn means that the previously discussed support for
collection proxies in RNTuple can be leveraged to get access to a given set’s data members



when writing to disk and to reconstruct the set when reading from disk. ROOT already pro-
vides collection proxies for most STL collections (including for std::set), which means
these can be accessed directly by the internal implementation and users don’t have to ex-
plicitly provide them (which is required for custom collections as discussed in the previous
section). In turn, this allows us to add std::set to te RNTuple as a separate, specialized
field type.

2.3 Post-read callbacks

A number of classes present in xAOD, the most prevalent among them being the
ElementLink class, require special I/O customization rules, also known as read rules, in
order to be properly initialized after reading. These customization rules may contain C++
code snippets that are able to access and – if desired – modify the data members. The rules
are invoked for every entry read, after deserializing the objects from the relevant branch or
field1. Use cases of such read rules include the initialization of transient data members and
custom schema evolution. The RNTuple implementation has been extended to load and pro-
cess such read rules, currently limited to modifying transient class members only. This is
sufficient for reading ElementLink objects.

2.4 Late model extensions

Another feature specific to xAOD are types referred to as dynamic attributes. Dynamic at-
tributes are data members whose presence in an xAOD object is optional and determined only
at runtime by the derivation application, based on the data content of each processed event
independently, and can be found in particular in DAOD_PHYS(LITE). This implies that at
the start of writing, when defining the RNTuple model, it is not yet known exactly which
dynamic attribute fields should be present.

To accommodate for the addition of dynamic attributes after the model has been defined,
we introduce late model extension to RNTuple. Contrary to the corresponding feature in
TTree, extending an existing RNTuple model only updates the on-disk metadata, i.e. previ-
ously written entries are left untouched. Instead, a default zero-initialized value for the added
field will be used as a placeholder when reading these entries. The interface for late model
extension is demonstrated in Figure 1.

3 Evaluation of RNTuple for DAOD_PHYS

In this section, we evaluate the storage efficiency and read throughput of TTree and RNTuple
for DAOD_PHYS. We evaluate a number of different compression methods and storage me-
dia, presented in Table 1. We use two sets of data samples. The first sample contains 180k
Run 2 Monte Carlo (MC) events, and 1789 branches/top-level fields. The second sample
contains around 210k Run 2 collision data events and 1312 branches/top-level fields.

The TTree-based benchmark data samples are prepared using ROOT’s hadd, which al-
lows for recompressing the original data samples with the different compression methods
mentioned in Table 1. We use hadd’s “-O” flag to ensure that the basket size of each re-
compressed TTree is optimized for the specified compression method. The RNTuple-based
benchmark data samples are prepared by converting the previously prepared TTree samples
into RNTuples using the RNTupleImporter utility that will be available alongside RNTuple

1One way to define such read rules is by defining a #pragma read directive in the LinkDef header of the class,
which specifies the data members to read from and write to.



auto model = RNTupleModel::Create();
auto fieldFloat = model->MakeField<float>("myFloat");

auto ntuple = RNTupleWriter::Recreate(std::move(model), "myNTuple", "myNTuple.root");
*fieldFloat = 42.0;
ntuple->Fill();

auto modelUpdater = ntuple->CreateModelUpdater();
modelUpdater->BeginUpdate();
auto fieldVec = std::make_shared<std::vector<float>>();
modelUpdater->AddField<std::vector<float>>("myVector", fieldVec.get());
modelUpdater->CommitUpdate();

*fieldFloat = 48.0;
*fieldVec = {1., 2., 3.};
ntuple->Fill();

Figure 1. RNTuple interface for late model extension. The contents of the myVector field will be
empty in the first entry.

Table 1. Overview of the DAOD_PHYS benchmarking phase space.

Storage format TTree, RNTuple
Compression method LZ4, zstd1, LZMA (level 1), LZMA (level 7)
Storage medium SSD (NVMe), HDD, RAM (tmpfs), XRootD
1 Current ATLAS default compression method

in ROOT7. The contents of the converted RNTuples are validated against the original TTrees
by verifying that the all RNTuple fields have a corresponding TTree branch and vice versa,
and by verifying that the histograms of a semi-randomly2 selected set of fields are equivalent
between TTree and RNTuple, as well as across compression methods.

3.1 Storage efficiency

Figure 2 shows the average event size for the different compression methods mentioned in Ta-
ble 1, both for the MC samples and the Run 2 data samples, respectively. The average event
size is determined by dividing the total number of compressed bytes (excluding bytes not
linked to any specific event, such as the header and footer in the case for RNTuple) by the
number of events in the data sample. We see that the average event size for the MC samples
is slightly larger than for the data samples. This can be explained by the additional MC infor-
mation present in these events, as well as potentially more pile-up. However, we also observe
that the RNTuple-based MC samples have a higher storage efficiency ratio with regard to
TTree, which in turn results in the average event size approaching that of the RNTuple-based
data samples. Further evaluation with more DAOD_PHYS (as well as DAOD_PHYSLITE)
samples is required to better understand which factors affect the RNTuple storage efficiency
for DAOD_PHYS files, but based on the current measurements, the relative storage reduc-
tion achieved by RNTuple for the different compression methods appears to correspond with
earlier observations using different benchmark data sets [3].

2For compatibility reasons, we only consider std::vector<float> for this part of the validation.
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Figure 2. RNTuple and TTree-based DAOD_PHYS storage efficiency for different compression meth-
ods. Left shows the average event size for the Monte Carlo samples, right for the data samples.

3.2 Read throughput

We evaluate the read throughput using an artificial event loop written in ROOT’s
RDataFrame [10]. This event loop reads 32 branches or fields containing particle data, all
of which are of type std::vector<float>, and fills a histogram for each branch or field.
No other processing of the data takes place, with the goal of minimising the time spent by
the CPU on non-I/O related tasks. The setup used for performing the benchmarks as de-
scribed here is shown in Table 2. We use a release build (compiler flag -O3) of ROOT3, with
asynchronous I/O through io_uring [11] enabled.

Table 2. Overview of the read throughput benchmarking setup.

CPU AMD APYC 7702P, 2GHz
RAM 128GB DDR4 RDIMM, 3200MHz
SSD Samsung MZWLJ3T8HBLS-00007
HDD TOSHIBA MG07ACA14TE SATA, 7200 RPM
Network 100 Gbit/s Ethernet1

OS AlmaLinux 9.1, Linux kernel 6.3 from ELRepo2

1 XRootD benchmarks use the projects.cern.ch EOS instance, in the
same datacenter.

2 RHEL9’s kernel currently does not enable io_uring.

The event loop as described above is used to measure the performance of different com-
pression methods on the storage media described in Table 1, for both TTree and RNTuple.
Performance is measured both in terms of the number of uncompressed bytes read from the
given storage medium per second (raw I/O throughput), and the number of events processed
per second (event throughput). The I/O throughput will be independent of the compression
method, while for the event throughput, we expect to observe different results for the different

3https://github.com/enirolf/root/releases/tag/chep23

https://github.com/enirolf/root/releases/tag/chep23


methods of compression, since part of the event processing involves decompression of data.
Taking into consideration both kinds of throughput moreover allows for determining whether
the benchmark runs are CPU bound or I/O bound. For SSD, HDD and RAM, each benchmark
is repeated ten times, with the page cache being cleared between each repetition for SSD and
HDD to ensure that the data is actually read from disk each time. Due to a non-negligible
variation in latency in XRootD, the benchmarks in this case are repeated twenty times and
outliers are removed (again with the page cache cleared between runs).
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Figure 3. RNTuple-based DAOD_PHYS event throughput speed-up compared to TTree-based
DAOD_PHYS, using different compression methods and storage media. Above shows the average
throughput speedup for the Monte Carlo samples, below for the data samples.

Figure 3 shows the event throughput ratio of RNTuple compared to TTree for the com-
pression methods and storage media included in the benchmarks. The difference in relative
speedup when reading from SSD compared to HDD can be explained by the fact that perfor-
mance is CPU bound for the benchmarks run using SSD, likely caused by decompression.
This is further demonstrated in Figure 4 and Figure 5, which show that for the MC sample, the
raw I/O throughput ratio between TTree and RNTuple is reasonably comparable between both
media However the event throughput ratio between TTree and RNTuple for all compression
methods (except for LZMA with level 1, which will be further investigated) is significantly
higher when reading from HDD than it is when reading from SSD. Similar observations are
made for the data sample.
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Figure 4. DAOD_PHYS SSD throughput. Left shows the raw I/O throughput for TTree and RNTuple.
Right shows the event throughput for TTree and RNTuple using different compression methods.
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Figure 5. DAOD_PHYS HDD throughput. Left shows the raw I/O throughput for TTree and RNTuple.
Right shows the event throughput for TTree and RNTuple using different compression methods.

4 Discussion

In this contribution, we presented the efforts to support the ATLAS analysis EDM, xAOD,
in ROOT’s new I/O subsystem, RNTuple. These efforts entail adding support for fields con-
taining custom collection-type and std::set objects, partial support for I/O customization
rules and late model extensions. With these additions, the reading and writing of AOD,
DAOD_PHYS and DAOD_PHYSLITE data sets in the offline analysis framework used by
ATLAS, Athena becomes possible.

We have compared the performance of RNTuple with respect to ROOT’s TTree I/O sub-
system that is currently used in Athena using DAOD_PHYS samples originating from both
Monte Carlo simulation and detector data. In general, we see that RNTuple outperforms
TTree both in terms of storage efficiency and read throughput. These results are in line with
previous observations using different data formats. When taking into consideration both stor-
age efficiency and read throughput, the current default compression method used by ATLAS
for TTree-based DAOD_PHYS(LITE) data files, zstd, also performs best with RNTuple.



Future work includes the evaluation of more data samples using both Monte Carlo and
detector data, in order to further understand the how the composition of these samples affects
performance. One observation to further investigate is the decreased event throughput for
LZMA level 1 of RNTuple compared to TTree for the MC. Moreover, we want to study the
performance of different access patterns using more (representative) analysis workflows. In
addition to DAOD_PHYS, we intend on evaluating DAOD_PHYSLITE in anticipation for its
official release and use in the HL-LHC era.

In conclusion, the results shown here make the benefits of using RNTuple for xAOD
apparent. However, we will need to continuously monitor how any future addition or change
will affect performance, be it positively and negatively, as RNTuple evolves further into a
production-ready state.
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