
Geant4 Monte-Carlo (GEMC)

A database-driven simulation program

Maurizio Ungaro1,∗

1Jefferson Laboratory

Abstract. GEMC[1] is an application that harnesses the power of databases to
execute Geant4 Monte-Carlo simulations.
The databases (MYSQL, CSQL, TEXT) define the geometry, materials, digiti-
zation algorithms, readout electronics and output formats.
Implemented in C++, GEMC also boasts a user-friendly Python API that facil-
itates detector construction and database population.
GEMC can handle real-life scenarios such as geometry variations and the run
number-dependent calibration constants and digitization parameters.
This abstract provides an overview of GEMC, accompanied by examples that
showcase its versatility. We delve into the practical application of GEMC within
the the CLAS12 experimental program at Jefferson Lab.

1 Introduction

Creating a Geant4 simulation application devoid of hardcoded numbers can be
achieved by replacing conventional calls like G4Box(‘box’, 20, 30, 40) with code
like G4Box(name, a, b, c) where the parameters are sourced from a database. This how-
ever does not eliminate the need for users to write in C++ and Geant4 code and engage in the
essential tasks of organizing the volumes, specify sensitivities, formulating the digitization of
Geant4 steps, and collecting and saving the resulting hits.

An application such as the one sketched Fig.1, capable of driving in its entirety a Geant4
simulation from databases and steering cards present several advantages:

• No need for prior expertise in C++ or Geant4.

• The focus squarely shifts towards the geometry aspect, facilitated by seamless interactions
with databases, allowing users to concentrate on experiment-specific details without the
burden of coding intricacies.

• The experiment setup is effortlessly shared without necessitating code recompilation. This
agility enhances teamwork, limits debugging and accelerates development.

• It serves as a unified platform capable of simulating diverse experiments. Users can readily
switch between experiments by selecting their desired configurations from the database.

∗e-mail: ungaro@jlab.org



Figure 1: GEMC: a Geant4 application driven in its entirety by databases: geometry, materials, dig-
itization, readout electronics, output format. Additional configurations such the choice of physics list,
magnetic field, experiment setup can be provided by steering cards (JSON).

We present the database driven GEMC[1, 3], a versatile solution that offers:

• Intuitive Python API: GEMC empowers users with an accessible Python API, enabling
effortless detector construction and seamless database population. Additionally, it supports
Computer-Aided Design (CAD (via Stereo-lithography STL1 files) and GDML imports,
further simplifying the setup process.

• Hardware Emulation: GEMC incorporates hardware emulation for readout electronics.
This allows users to mimic real-world electronic components, enhancing the accuracy and
realism of the simulations.

• Custom Digitization: the flexibility to define custom digitization procedures for Geant4
steps ensures that the simulated detectors response mimic the real detectors’.

• Data Streaming: downstream analysis is facilitated by the options to stream simulation
results directly to disk storage or network. Pre-loaded plugins provide ROOT and TEXT
output formats.

2 Features

2.1 Geometry Sources

GEMC offers multiple sources for reading geometry and materials definitions,
1STL: A widely used file format in 3D design printing. STL represents 3D surfaces as a collection of intercon-

nected triangles



• CAD Import (STL): objects are defined using STL files, loaded via steering cards. Optional
JSON files can add attributes like materials, hierarchy, position, rotation, etc.

• GDML files: same as CAD import, but the geometry is defined in a GDML file.

• Databases and Text Files: native Geant4 geometry and materials can be defined using
Python API and stored in databases (MySQL, Sqlite) or text files. This includes combining
volumes through copy and boolean operations.

Users may define volume hierarchies mixing sources. For instance, a CAD file can be im-
ported and serve as the parent for a volume defined in a database, or vice versa. This versa-
tility empowers users to create complex geometries with ease.

2.2 Python API

Designed with a user-centric approach, the API prioritizes intuition and simplicity, requiring
no additional code beyond its usage to develop a comprehensive simulation. In Fig.2, an
example demonstrating the simplicity of the Python API to build a detector and populate the
databases is shown. Notice how users need only to fill entries with quantities they are familiar
with, such as shape type, dimensions, etc, and not worry about the code necessary to define
the geant4 objects, assign sensitivity to the scintillator, collect hits and writing the output.

Figure 2: Left: the code snippet creates a cylindrical target and a sensitive flux box scintillator. Right:
the resulting geometry. The flux scintillator paddle collects hits from proton impinging on the liquid
hydrogen target.

The API is also used to define materials. An example of defining a material using the
fractional mass of its constituents is shown in the code below. Similar code is used for
molecular composition and composition with different materials

2.3 Electronic Time Window and Energy Sharing

Replicating the data collection mechanism is essential to ensure that a simulation is indistin-
guishable from real experimental data. In GEMC, the integration of this critical aspect for
sensitive detectors is seamless and user-friendly.



The collection of digitized values, such as integers (ADC, TDC2) or payloads (FADC3),
within a user-set time window is handled automatically by GEMC, see Fig.3 (left).

Furthermore, GEMC offers the capability to artificially generate hits, mimicking the phe-
nomenon of energy sharing commonly observed in real detectors, especially among adjacent
sensitive elements like silicon strips. The realism of simulations is enhanced by simulating
energy distribution and sharing patterns that occur naturally in experimental setups. In Fig.3
(left) the hit time window definition is shown: two primary tracks and a secondary track de-
posit energy within the sensitive element “cell 2”. The triangular steps associated with the
secondary track exhibit a significant time difference compared to the circular steps, exceeding
the sensitive time window. As a result, GEMC correctly produces two separate hits, collect-
ing the circles into one and the triangles in the other one, mirroring the behavior of realistic
readout electronics. In Fig.3 (right) the energy sharing mechanism, a common phenomenon
in real detectors, is illustrated: the red steps are artificially generated, with a user-defined
algorithm, based on the real Geant4 steps, to mimic energy sharing.

Figure 3: Left: the time window mechanism separates the circle and triangle Geant4 steps are collected
in two hits. Right: the red steps are artificially generated to mimic energy sharing based on the green
Geant4 steps.

2.4 Sensitivity and Digitization

The digitization of Geant4 steps is a pivotal aspect of the simulation process. GEMC simpli-
fies this critical step by offering an intuitive interface that presents Geant4 steps with com-
monly used algorithms. Here is an overview of the functionalities it supports:

• Readout Electronics Parameters: define parameters such as the time window, aligning sim-
ulations with real-world data acquisition.

• Energy Sharing and Hit Proliferation: customize energy sharing and hit proliferation mech-
anism.

• Calibration and Digitization Constants: load parameters from databases sources.

• Translation Table: map Geant4 volume identifiers to crate/slot/channel.

• Hit Digitization: collection and treatment of Geant4 steps.

2ADC:Analog-to-digital converter ; TDC: Time-to-digital converter. These system convert analog signals to
digital signals.

3Flash ADC: provides instantaneus conversion of analog signals to digital signals, which enables the sampling
of the shape of the signals



• Streaming Readout: define parameters for data streaming to disk or network storage.

• Output Bank: specify the output organization for hits, such as ADC, TDC, FADC, or SRO
payload4.

GEMC’s plugin framework streamlines the digitization process, allowing users to tailor
simulations to closely match real-world data acquisition systems while maintaining flexibility
and ease of use.

2.5 Data Streamer

GEMC provides Data Streamers to handle the storage of data to files or disk. These stream-
ers are stored in dynamic libraries, separate from the GEMC core, ensuring modularity and
maintainability and allowing users to create their own streamers.

They offer structured access to data collection classes like GEventDataCollection (for
event-by-event hits) and GFrameDataCollection (for time-based hits). These streamers sup-
port a wide array of formats, including general ones like TEXT and ROOT, as well as Jeffer-
son Lab-specific formats like HIPO, EVIO, and VTP Binary. This workflow simplifies data
publishing, allowing users to concentrate solely on defining the variables to be added to the
data collection without concerning themselves with the intricacies of the output format.

3 Examples

Two GEMC examples that showcase its versatility and practicality are shown. The first il-
lustrates the CAD integration. The second example takes us to the CLAS12 experiment at
Jefferson Lab, where GEMC plays the role of simulating and calculating the response of
real-world experiments and data acquisition processes.

3.1 Cad Import

This example highlights GEMC’s versatility in handling CAD imports and its ability to create
engaging simulations of complex scenarios with minimal coding. The goal is to visualize and
simulate interactions between two iconic spacecraft: an Enterprise ship and a Romulan ship.

The volumes are imported directly from two STL files: “enterprise.stl” and “romulan.stl”.
The following line in a JSON steering card takes care of the romulan ship color, including its
transparency that honors the cloaking technology, and assigns the “flux” sensitivity to it:

"romulans": {"color": "ff99bb4", "digitization": "flux"}

With command line options a proton beam is shot at the Romulan ship. No actual code is
required to run the simulation, shown in Fig.4.

3.2 GEMC at Jefferson Lab

GEMC is used for simulations of the CLAS12 (CEBAF Large Acceptance Spectrometer for
operation at 12 GeV beam energy) [3] spectrometer at the Thomas Jefferson National Accel-
erator Facility. CLAS12 is designed to study electro-induced nuclear and hadronic reactions
by efficiently detecting charged and neutral particles over a large solid angle. It consists
of two superconducting magnets and multiple detector subsystems. These detectors include

4SRO: Streaming Readout Output. Instead of writing digital signals on disk, the snapshots of the readout elec-
tronics are continuosly streamed to data handlers that filter the data before writing it to disk



Figure 4: Left: the geometry of the Enterprise and Romulan ships imported from STL files. A proton
beam is shot at the Romulan ship and the resulting energy deposited in the Romulan ship is shown to
the right.

Drift Chambers, Cherenkov Counters, Ring-Imaging Cherenkov Counters, central and for-
ward time-of-flights (CTOF, FTOF), forward trackers (FT) and electromagnetic calorimeters,
silicon vertex trackers (SVT) and more.

The geometry and materials, stored in databases, are a combination of native Geant4
volumes and CAD imports. In Fig.5, a few components are shown. In particular the CLAS12
torus hardware’s volumes are imported from the CAD engineering model. Detailed in bottom
left, the warm and cold hubs are visible, along with the tungsten shielding in the innermost
part of the hub. The central detector is shown on top right: the target is surrounded by 3 layers
of SVT and 6 layers of Micromegas, 3 with Z- strips, 3 with C-strips. On the downstream
end (beam incident from the left) the Forward Micromegas Tracker disks are visible.

The performance of the GEMC CLAS12 simulations is evaluated by comparing the pre-
dicted background rates from beam interactions with experimental data. The predictions are
based on the simulated interactions of the 11 GeV electron beam with the CLAS12 target,
using the various electronics time windows and thresholds to accumulate hits in the detectors.
A typical single event of these simulations contains about 120 thousand electrons to match
the CLAS12 experimental conditions. Examples of these studies are shown in Fig.6, where
simulations were run at the full CLAS12 1035cm−2s−1 luminosity, corresponding to 124,000
electrons in a 250 ns time window. The scattering electrons along the beamline are focused
along the beamline by the solenoid, an effective electromagnetic shield for CLAS12. The
choice of energy threshold in the SVT is shown in the bottom left panel: the hits are repre-
sented by the squares. The threshold applied in the four plots are: no energy cut; 10, 20, 30
keV. The SVT final choice of threshold based on the background rejection study was 30 keV.
The table showing the fluences and radiation doses in the SVT layers is also shown on the
bottom right.

The nominal luminosity of 1×1035cm−2s−1 was achieved in CLAS12 in December 2017,
and rates in each of the CLAS12 detectors were measured. The rates in the Drift Cham-
bers were found to be in good agreement with the GEMC predictions, see table 1. Similar
agreements were found with the rates in the other CLAS12 detectors. In particular:

• FTOF: good agreement with data for the PMT currents [4].

• CTOF good agreement with data for the upstream PMT counter rates, while the down-
stream counter rates are about a factor of three lower in the simulation than they are in the



Figure 5: Top Left: the GEMC implementation of the CLAS12 torus hardware. Bottom Left: a section
view of the torus in the vicinity of the beamline. Beam is incident from the left. Top Right: a longitudinal
cut view of the CLAS12 Central Detector trackers. Bottom Right: detail of the Micromegas GEMC
geometry, showing the overlay cover, the copper ground, and the PCB.

data, probably due to the simulation not taking into account the Cherenkov light produced
in the light guides [6].

• FT: good agreement with data for PMT currents and radiation doses [5].

Region Data GEMC
1 2.8% 2.7%
2 0.6% 0.8%
3 1.5% 1.2%

Table 1: Drift chamber hit occupancy comparison between simulation and data.

GEMC has been shown to perform very well when comparing simulation rates to data
and it was an essential component to optimize the design of the CLAS12 detectors, their
associated calibration procedures, and their ultimate performance.



Figure 6: Top Left: one event in the Central Detector at the full CLAS12 1035cm−2 s−1 luminosity Bottom
Left: The occupancy in the SVT layers for different thresholds for one event containing a proton track
(direction indicated by the arrow). Right: Summary of radiation doses and background rates in the SVT.
The rate breakdown for different particles for a threshold of 20 keV at the full luminosity of CLAS12.

4 Conclusion

In conclusion, the article presents GEMC, a Geant4 simulation application capable of creating
Geant4 simulations by leveraging databases and steering cards. It eliminates the need for
users to have expertise in C++ and Geant4 coding, allowing them to focus on experiment-
specific details.

Key takeaways include GEMC’s intuitive Python API, which simplifies detector construc-
tion and database population, as well as its ability to emulate real-world hardware, customize
digitization processes, and streamline data output to disk or network.

These features empower researchers to create accurate and efficient simulations while
significantly reducing development time and coding complexities.

References

[1] GEMC homepage, https://gemc.github.io/home/
[2] Geant4 - A Simulation Toolkit, S. Agostinelli, et al, Nucl. Instrum. Meth. A 506, 250-303

(2003)
[3] The CLAS12 Geant4 simulation, M. Ungaro, et al, Nucl. Instrum. Meth. A 959, 163422

(2020)
[4] The CLAS12 Forward Time-of-Flight System, D. S. Carman and others, Nucl. Instrum.

Meth. A 960, 163629 (2020)
[5] The CLAS12 Forward Tracker, A. Acker and others, Nucl. Instrum. Meth. A 959, 163475

(2020)
[6] The CLAS12 Central Time-of-Flight System, D. S. Carman and others, Nucl. Instrum.

Meth. A 960, 163626 (2020)

https://gemc.github.io/home/

	Introduction
	Features
	Geometry Sources
	Python API
	Electronic Time Window and Energy Sharing
	Sensitivity and Digitization
	Data Streamer

	Examples
	Cad Import
	GEMC at Jefferson Lab

	Conclusion

