
Integrating the Rivet analysis tool into EPOS 4

Johannes JAHAN1,2,∗, Klaus WERNER2,∗∗, and Damien VINTACHE2

1Department of Physics - University of Houston, Houston, TX 77204, USA
2Subatech, Nantes University - IN2P3/CNRS - IMT Atlantique, Nantes, FR

Abstract. EPOS 4 is the last version of the high-energy collision event gener-
ator EPOS, released publicly in 2022. It was delivered with improvements on
several aspects, whether about the theoretical bases on which it relies, how they
are handled technically, or regarding user’s interface and data compatibility.
This last point is especially important, as part of a commitment to provide the
widest possible use. In this regard, a new output data format have been im-
plemented, based on the HepMC standard libraries. This feature enables in
particular the analysis of EPOS simulations with Rivet , an analysis and vali-
dation toolkit for Monte Carlo event generators, with recent major upgrades on
concerning heavy-ion analysis methods. In order to take advantage of this, the
use of Rivet has been implemented directly in the EPOS analysis machinery,
ensuring an easy and fast solution for comparison with experimental data, ben-
eficial for both developers and users. We will hence present here the details of
this implementation and the results obtained thanks to it.

1 Introduction

Event generators (EGs) are codes engineered to compute models in order to simulate
collisions on an event-by-event basis, using Monte-Carlo sampling techniques. They occupy
a key-role in the field of high-energy physics, as they offer the advantage of offering a perfect
knowledge of the whole history of simulated events, although indeed biased by a dependence
on the parametrization of the underlying model(s) they are based on. EGs are used on the
experimental side, contingently with detector simulation, to help designing new hardware
and facilities, testing analysis and charactirizing systematic errors. Most of all, they bridge
the gap between theory and experiment as being employed for data interpretation and model
validation [1].

For this reason, user’s interface, data compatibility and especially compliance to standard
formats used by the community is primordial for an EG, to ensure the widest use possible. It
has been an important aspect of the development of EPOS4 [2], the latest version of EPOS
released publicly in Oct. 2022 [3]. Hence, after describing summarily in section 2 the main
physics features of EPOS, with a focus on the new developments achieved for EPOS4, we
will explain in section 3 how it has been adapted to take advantage of the features of the Rivet
analysis toolkit [4]. We will then confront results of similar analyses obtained through the

∗e-mail: jahan.johannes@gmail.com
∗∗e-mail: werner@subatech.in2p3.fr



EPOS analysis framework and through Rivet , as a cross-check validation for EPOS analyses,
and discuss possible discrepancies. Finally, we will consider different outlooks and potential
improvements for this new EPOS+Rivet framework.

2 EPOS4

EPOS1 is a Monte-Carlo multi-purpose EG for high-energy scatterings. It has been devel-
oped to simulate any type of collisions, based the same formalism, from e+ + e− to A + A
systems.

Initial conditions within EPOS are simulated using the Parton-based Gribov-Regge The-
ory [5], a S-matrix-based multiple scattering approach including perturbative QCD calcu-
lations for hard processes. Important improvements have notably been achieved in EPOS4
regarding the coherent treatment of factorization and saturation, by including a dynamical
saturation scale [2]. The partons cascades created through initial conditions are then mapped
to color-flux strings exchanged between collision remnants, as shown on Figure 1. When
the density of strings is too high, which happens in high-multiplicity hadronic collisions for
instance, strings can not decay independently from each other, a so-called core-corona pro-
cedure is applied [6].

Figure 1. Schematic view of a collision with multiple strings (in red) exchanged between projectile
and target remnants (in blue) [7].

The string segments in the high-density region will form the core, which will evolve
according to 3+1D viscous relativistic hydrodynamics [8, 9], while the high-pT segments
will escape to form the corona, evolving and breaking according to a relativistic string model
[10, 11]. Dynamical effects of strings segment’s energy loss while escaping the core are also
taken into account [12]. The only equation of state originally available for the hydrodynamic
evolution contains a simple crossover between deconfined matter and hadronic phase, with
conservation of the B, Q and S conserved charges currents [8]. A new feature of EPOS4 is
the possibility to select an equation of state from the BEST collaboration, including a 1st

order phase transition and a critical point which location can be chosen [13, 14].

1Energy conservation + Parallel scattering + factOrization + Saturation



Once the core have evolved and cooled down to a given critical value of energy density
ϵH , it is hadronised using a microcanonical procedure newly implemented in EPOS4 [15],
which plays an important role to reproduce canonical suppression of heavy hadrons in small
systems. At last, all hadrons formed from both core and corona (via string fragmentation
in the latter case) can re-interact through hadronic cascades, modeled with UrQMD as an
hadronic afterburner [16].

3 EPOS4 + RIVET

Any new version of an event generator requires intensive testing, in order to find the most
adequate tuning of parameters that enables to reproduce results for the widest possible range
of energies and system sizes. For EPOS4, the applicability lies from p+p collisions with
collision energies

√
s = 0.2 − 14 TeV, to Au+Au/Pb+Pb collisions with collision energies

from
√

sNN ≈ 20 GeV/A to
√

sNN = 5 TeV/A, covering almost the entire diagram displayed
in Figure 2. Thus, testing a new parametrization across all the systems and energies is highly
time consuming in terms of computational resources: we estimate having utilized around 210
million hours of CPU-time in 2022, the year of the public release of EPOS4.

Figure 2. System-size vs. energy range diagram of all current high-energy hadronic scattering
experiments and theoretical formalism used to describe them [17].

Such tedious task hence motivates the use of model-to-data comparison tool, namely
Rivet . Although EPOS includes its own on-stream analysis framework, the choice to use
Rivet relies on the fact that the analyses it contains are usually submitted by the experimental
collaborations themselves, thus as close as possible to the ones used to obtain the data pub-
lished in scientific papers. For us developers, it gives a way to cross-check the analyses we
have already implemented through EPOS4 on-stream analysis framework, and allows us to
complete this set of analyses thanks to an extensible catalogue. At the same time, it offers
to users the option of using an independent analysis tool which is standardized and easy to
handle.



3.1 Rivet

Rivet (which stands for Robust Independent Validation for Experiment and Theory) is a
system for validation of MC event generators, based on a C++ framework for analysis
algorithms [18]. The purpose of Rivet is to offer a simple and standardized tool for
comparison between EGs simulations and experimental data, as well as ensuring analysis
conservation for experimental collaborations.

In Rivet , each analysis reflects a single publication, containing thus the code to run all,
or part of all the analyses which results are presented in the publication. Each of them is
provided with the corresponding set of experimental data, connected and synchronised with
HepData when available [19]. Rivet is based on the standard HepMC library for input data
from simulations, contains libraries of generator-independent event analysis methods and
even comes with a dedicated histogramming an plotting tool, YODA [20].

3.2 HepMC output format with EPOS4

The first step to make EPOS4 compatible with the use of Rivet is to produce the standard
data format it reads, namely HepMC (for "High-energy physics Monte-Carlo"). HepMC a
package of object-oriented C++ libraries for event record in high-energy physics Monte-
Carlo generators and simulations [21]. With EPOS4, one can produce ASCII output files
using either HepMC2 (based on version 2.6.9 [22]) or HepMC3 (based on version 3.2.6 [23]).

Consequently, the code and user’s interface of EPOS4 have been modified to leave the
choice of activating or not the production of HepMC recording, as well as selecting other
features. One of the main questions when dealing with big amounts of data, which are
necessary when comparing simulations with experimental results, is how to save memory
space. The challenge is to find the good balance between recording enough information in
the simulated event records to capture all the necessary information needed for analyses,
and trying to avoid recording useless information which would take space for nothing. To
give a concrete example, 10k complete events of Au+Au collisions at

√
sNN = 39 GeV/A,

simulated with EPOS4 under uncompressed HepMC 2 format, occupy 2.1GB of memory
space. A significant comparison to experimental results, however, usually requires several
millions of events.

The amount of information that is needed from recorded simulated events depends on
the type of analysis which is run. For instance, a simple charged particle multiplicity anal-
ysis requires only the list of final-state particle created in the collision, while in the case of
quarkonia studies, one needs to record the decay products of any quarkonium, to be able to
reconstruct it. Hence, we give in EPOS4 the possibility to choose between several HepMC
recording modes.

1. "final_state" mode, recording only the final-state particles of each event, in addition
to the beam particles, is usually enough for simple analyses like charged multiplicity
distributions.

2. "decays" mode, recording all particles with a lifetime longer than a given value τdecay,
as well as their decay cascade (with τdecay a parameter which can be specified by the
user), is useful for most analyses of identified particles that need correction from feed-
down contributions.



3. "before_hacas" mode, recording the distribution of particles before hadronic cascade
when activating the simulation of hadronic cascades with UrQMD.

4. "without_hacas" mode, recording the distribution of particles in the alternative sce-
nario where the simulation of hadronic cascades wouldn’t be activated (using the
"without_hacas" mode), when it is.

5. "full" mode, recording the entirety of the simulated events, although only considering
meaningful physical particles, ignoring thus theoretical objects such as string segments.

In the event of a user interested in studying specific hadronic species, one can also specify
the identifiers of given species which decay cascade will then be recorded, even if they don’t
match the recording conditions defined in the recording mode being used.

Another feature is the possibility to apply a rapidity boost to the system, which can be use-
ful when simulating collisions for asymmetric systems for instance. More details regarding
the HepMC output in EPOS4 are given in the online documentation [24].

3.3 Implementing Rivet into EPOS analysis framework

Thanks to the production of HepMC output files, it is now possible to run Rivet analyses on
EPOS4 simulations. We have thus decided to push this functionality further, in order to help
us optimizing the tuning process of the model. We have integrated Rivet directly into the
pre-existing EPOS analysis framework, meaning that any user can now call Rivet analyses
from EPOS configuration files, like any other regular EPOS analysis, and results will be
added to the usual EPOS analysis output files (called .histo files). Hence, although one can
still use Rivet the regular way (by producing at first a HepMC file, and then executing in a
second time Rivet to run an analysis on it), this 2-steps process can now be done all at once
from a single execution of EPOS4.

Figure 3. Schematic representation of an analysis workflow for multiple EPOS jobs running
in parallel.

To do so, we have developed a Python wrapper which takes information regarding possi-
ble Rivet analyses to run from the configuration file, run those analyses and then convert the
histograms obtained from the YODA format returned as an output by Rivet into the format
used in EPOS .histo files. The way this process is integrated into the EPOS analysis frame-
work is displayed schematically in Figure 3, for a scenario where several jobs, simulating



n events with EPOS, are working in parallel. For the ith job, on-stream EPOS analyses are
run on an event-by-event basis, with the corresponding obtained histograms being updated at
every iteration in the .histo file. Once all n events of this job have been simulated, the HepMC
file produced that contains those events is fed into Rivet by the Python wrapper to run the
analyses requested by the user. The histograms obtained and stored in the resulting YODA
files (1 per analysis) are then converted and stored into the corresponding .histo file of this
same ith job by the Python wrapper. At last, the temporary YODA files are deleted, as well
as the HepMC files (both represented in red on Figure 3 for this reason), if the user have not
specified they wanted to save them. This way, one can actually run Rivet analyses on-the-fly
without having to save temporary files which can take up significant memory space.

4 Analysis Results & Comparisons

In this section, we compare similar analyses run both with the EPOS4 on-stream analysis
framework and with Rivet , for p+ p collisions at collision energy

√
s = 7 TeV. The aim is to

cross-check the validity of EPOS analyses, thus making sure the parametrization is based on
trustworthy results, although the ones shown here only reflect a small part of the whole scan
in systems and energies achieved in that extent.

Figure 4. Results from identical analyses run with EPOS4 on-stream analysis framework and Rivet ,
on p + p simulations at

√
s = 7 TeV, compared with ALICE data displayed in black dots, for:

(a) charged particle multiplicity distribution, (b) charged particle pseudorapidity distribution [25].

The first checks shown here concern general quantities charactirizing the events analyzed.
On Figure 4, one observes that multiplicity and pseudorapidity distributions for charged par-
ticles are identical for both analysis tools, confirming that the analyses run with EPOS4 are
correct (as we assume the Rivet analyses are supposedly the correct ones).

On Figure 5 (a), one can see that no D∗ are found through the Rivet analysis. This is due
to the fact that those very short-lived resonances are not recorded in HepMC files because they
have a τD∗ < τdecay, which is set by default to 10−19s. It illustrates thus why the fact to let
the user select specific hadronic species they want to record, despite the established trigger, is
important for some analyses. On Figure 5 (b), one can observe a discrepancy between EPOS4
and Rivet analyses regarding charged Ξ production at low-pT . It is an important finding, as
we do not understand its cause and will hence have to investigate in details the differences
between the methods used in the 2 different frameworks.



Figure 5. Same as Figure 4, for: (a) charged D∗ meson pT -differential distribution [26],
(b) charged Ξ + Ξ pT spectrum compared with CMS data [27].

5 Summary & Outlook

To summarise, we have added the possibility to produce HepMC event record files with
EPOS4 as part of the efforts towards improving its compatibility for its public release. This
new feature not only enables to use the Rivet package to analyze EPOS4 simulations, but we
have also included the possibility to call Rivet analyses directly through the EPOS on-stream
analysis framework. The goal of such implementation is not only to simplify the experience
of the user, but also to help developers in the process of scanning all different collision
systems and energies to find the best set of parameters to tune the EG.

Thanks to this implementation, Rivet analyses are run on the fly, like any other analysis
from the EPOS4 analysis framework, reducing the number of steps to be executed by
the user. It helps to save memory space too, since it allows to get rid of the HepMC file
containing the recorded events, and we allow the user to chose which specific plots they want
to save from the Rivet analysis. However, the ability to run Rivet analyses for heavy-ion
is more tedious, since they usually require an extra step for centrality calibration. To deal
with it in EPOS4, we pre-save centrality calibration files, assuming that any newly generated
events should follow approximately the same distribution. If it is not the case, the user would
then need to run again the analyses using a newly generated centrality calibration file, which
makes thus losing the advantage of combining steps when calling Rivet analyses through
EPOS4.

However, this new feature could be further improved by using FIFO pipe to run Rivet ,
in order to save the memory space used by HepMC files when running jobs, even if only tem-
porarily. Finally, despite the efforts to develop all the tools necessary for heavy-ion analyses
such as centrality determination [28], the analysis coverage in Rivet for such systems is too
limited to make it a complete and efficient tool for model parametrization.

References

[1] J.M. Campbell, M. Diefenthaler, T.J. Hobbs, S. Höche, J. Isaacson, F. Kling, S. Mrenna,
R. et al. (2022), arXiv:2203.111110 [hep-ph]

[2] K. Werner (2023), arXiv:2301.12517 [hep-ph]
[3] EPOS4 – https://klaus.pages.in2p3.fr/epos4/

https://arxiv.org/abs/2203.11110
https://arxiv.org/abs/2301.12517
https://klaus.pages.in2p3.fr/epos4/


[4] C. Bierlich et al., SciPost Phys. 8, 026 (2020), arXiv:1912.05451 [hep-ph]
[5] H.J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K. Werner, Phys. Rept. 350, 93

(2001), arXiv:hep-ph/0007198
[6] K. Werner, Phys. Rev. Lett. 98, 152301 (2007), arXiv:0704.1270 [nucl-th]
[7] K. Werner, MPI in event generators, in Joliot-Curie School (October 2018)
[8] K. Werner, I. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, Phys. Rev. C 82, 044904

(2010), arXiv:1004.0805 [nucl-th]
[9] I. Karpenko, P. Huovinen, M. Bleicher, Comput. Phys. Commun. 185, 3016 (2014),
arXiv:1312.4160 [nucl-th]

[10] K. Werner, Phys. Rept. 232, 87 (1993)
[11] H. Drescher, PhD Thesis, Université de Nantes (1999), http://hal.in2p3.fr/

in2p3-00021346

[12] K. Werner, I. Karpenko, M. Bleicher, T. Pierog, S. Porteboeuf-Houssais, Phys. Rev. C
85, 064907 (2012), arXiv:1203.5704 [nucl-th]

[13] M. Stefaniak, K. Werner, J. Jahan, H.P. Zbroszczyk, Phys. Rev. C 108, 014905 (2023),
arXiv:2209.12979 [hep-ph]

[14] P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J. Noronha-Hostler, K. Ra-
jagopal, C. Ratti, T. Schäfer, M. Stephanov, Phys. Rev. C 101, 034901 (2020),
arXiv:1805.05249 [hep-ph]

[15] K. Werner (2023), arXiv:2306.10277 [hep-ph]
[16] M. Bleicher et al., J. Phys. G25, 1859 (1999), arXiv:hep-ph/9909407
[17] K. Werner, EPOS4 - An overview, in 38th Winter Workshop on Nuclear Dynamics

(February 2023)
[18] RIVET – https://rivet.hepforge.org/
[19] HepData – https://www.hepdata.net/
[20] YODA – https://yoda.hepforge.org/
[21] HepMC – http://hepmc.web.cern.ch/hepmc/
[22] L.G..L.S. M. Dobbs, J.B. Hansen, HepMC 2: A C++ event record for Monte-

Carlo generators (2010), http://www.t2.ucsd.edu/twiki2/pub/HEPProjects/
HepMCReference/HepMC2_user_manual.pdf

[23] A. Buckley, P. Ilten, D. Konstantinov, L. Lönnblad, J. Monk, W. Pokorski, T. Przedzin-
ski, A. Verbytskyi, Comput. Phys. Commun. 260, 107310 (2021), arXiv:1912.08005
[hep-ph]

[24] EPOS4/Manuals – https://klaus.pages.in2p3.fr/epos4/code/manual
[25] K. Aamodt et al. (ALICE), Eur. Phys. J. C 68, 345 (2010), arXiv:1004.3514

[hep-ex]

[26] B. Abelev et al. (ALICE), JHEP 01, 128 (2012), arXiv:1111.1553 [hep-ex]
[27] V. Khachatryan et al. (CMS), JHEP 05, 064 (2011), arXiv:1102.4282 [hep-ex]
[28] C. Bierlich et al., Eur. Phys. J. C 80, 485 (2020), arXiv:2001.10737 [hep-ex]

https://arxiv.org/abs/1912.05451
https://arxiv.org/abs/hep-ph/0007198
https://arxiv.org/abs/0704.1270
https://ejc2018.sciencesconf.org/data/pages/joliot.20.pdf
https://arxiv.org/abs/1004.0805
https://arxiv.org/abs/1312.4160
http://hal.in2p3.fr/in2p3-00021346
http://hal.in2p3.fr/in2p3-00021346
https://arxiv.org/abs/1203.5704
https://arxiv.org/abs/2209.12979
https://arxiv.org/abs/1805.05249
https://arxiv.org/abs/2306.10277
https://arxiv.org/abs/hep-ph/9909407
https://indico.cern.ch/event/1196342/contributions/5228273/attachments/2588317/4465957/z-mex.pdf
https://rivet.hepforge.org/
https://www.hepdata.net/
https://yoda.hepforge.org/
http://hepmc.web.cern.ch/hepmc/
http://www.t2.ucsd.edu/twiki2/pub/HEPProjects/HepMCReference/HepMC2_user_manual.pdf
http://www.t2.ucsd.edu/twiki2/pub/HEPProjects/HepMCReference/HepMC2_user_manual.pdf
https://arxiv.org/abs/1912.08005
https://arxiv.org/abs/1912.08005
https://klaus.pages.in2p3.fr/epos4/code/manual
https://arxiv.org/abs/1004.3514
https://arxiv.org/abs/1004.3514
https://arxiv.org/abs/1111.1553
https://arxiv.org/abs/1102.4282
https://arxiv.org/abs/2001.10737

	Introduction
	EPOS4
	EPOS4 + RIVET
	Rivet 
	HepMC output format with EPOS4
	Implementing Rivet into EPOS analysis framework

	Analysis Results & Comparisons
	Summary & Outlook

