
Glance Search Library

Gabriel José Souza e Silva1,∗, Carlos Henrique Ferreira Brito Filho1,∗∗, and Gloria Corti2,∗∗∗

Joel Closier2,∗∗∗∗

1Universidade Federal do Rio De Janeiro, COPPE/EE/IF, Brazil
2European Organization for Nuclear Research, Switzerland

Abstract. The LHCb experiment is one of the 4 large LHC experiments at
CERN. With more than 1500 members and tens of thousands of assets, the
Collaboration requires systems that allow the extraction of data from many
databases according to some very specific criteria. In LHCb there are 4 produc-
tion web applications responsible for managing members and institutes, track-
ing assets and their current status, presenting radiological information about
the cavern, and supporting the management of cables. A common requirement
shared across all these systems is to allow searching information based on logi-
cal expressions. Therefore, in order to avoid rework, the Glance Search Library
was created with the goal of providing components for applications to deploy
frontend search interfaces capable of generating standardized queries based on
users’ input, and backend utility functions that compile such queries into a SQL
clause. The Glance Search Library is split into 2 smaller libraries maintained
in different GitLab repositories. The first one only contains Vue components
and JavaScript modules and, in LHCb, it is included as a dependency of the
SPAs (Single Page Applications). The second is a PHP Object-Oriented library,
mainly used by REST APIs that are required to expose large amounts of data
stored in their relational databases. This separation provides greater flexibility
and more agile deployments. It also enables lighter applications with no graph-
ical interface to build command line tools solely on top of the backend classes
and predefined queries.

1 Introduction

The LHCb experiment [1] is one of the particle physics detector experiments at CERN’s
Large Hadron Collider [2]. It is a specialized experiment initially designed to study the
differences between matter and antimatter through precision measurements of particles that
contain a b quark. The experiment has made significant contributions to the field of particle
physics, including the discovery of new particles and precision measurements of CP viola-
tion, i.e asymmetric behaviour between particles and anti-particles. In order to support the
organizational aspects of the collaboration and the detector operation, Web systems for asset
and membership management, workflow tracking, radiological surveys are deployed.

∗e-mail: gabriel.jss@cern.ch
∗∗e-mail: carlos.brito@cern.ch
∗∗∗e-mail: gloria.corti@cern.ch
∗∗∗∗e-mail: joel.closier@cern.ch

The Glance Team is a twenty-year-old software development group initiated in 2003 at
UFRJ for the ATLAS Experiment [3]. Nowadays, Glance has 12 developers affiliated with
UFRJ that collaborate with ATLAS, LHCb, and ALICE with a technical coordinator at CERN
and a project responsible at UFRJ. Experimental representatives from ALICE [4], ATLAS
and LHCb complete the management of the project. The team also has members from Uni-
versità degli Studi di Udine and LIP-Laboratório de Instrumentação e Física Experimental de
Partículas.

In LHCb, Glance provides four systems. The first, Membership, allows to manage the
collaboration members and their affiliations alongside with participations for institutes as-
sociated with the experiment. LBEMS is an asset management tool: it is used to monitor
information such as price, location, physical details and radiation measurements of the as-
sets that compose the LHCb detector. Cables has a similar purpose as LBEMS specifically
for cables and requests for their installation. RP Survey, which is the most recent, is a sys-
tem to support radiological surveys in the experimental cavern with the goal of documenting
radiation levels for easy use in safety and regulatory matters.

In order to increase productivity and standardize the software development processes, the
Glance team created FENCE [5]: an in-house PHP Web framework to develop systems for
the experiments. FENCE takes a JSON configuration file as input and builds webpages based
on the settings defined in this file, reducing the amount of code developers have to write
and ultimately allowing the final users and product managers to customize the applications.
One of its most powerful tools is the FENCE Super Search: a tool built in FENCE to create
advanced search interfaces. It was adopted in LHCb and used to construct the first versions
of the Membership and LBEMS systems. However, FENCE-based applications had limited
customization options, lacked documentation and presented high coupling between the web
interfaces, database connection and business logic. Due to these limitations, the team started
a collective effort to refactor the applications to a more modern software stack and in this
context, the Glance Search Library was created to replace FENCE’s Super Search.

2 The older Fence Super Search

The FENCE Super Search is a set of classes used to create advanced search interfaces split
into two web pages (views). The first is called Search Workspace [5] and allows users to
compose a structured search criterion using logic operators. The second view is responsible
for presenting the results in a tabular view according to a set of parameters provided in a
JSON file. In the query workspace, users add circles (nodes) that are horizontally connected
by AND operators and vertically connected by the operator OR. An example and its
limitation are shown in Figure 1 and Figure 2 which are an attempt to search for all cables
that start in point A and end in point C plus all cables that start in point B and end in
point D. In Figure 1 the query is composed through dragging and dropping nodes, and in
Figure 2 results are displayed in a table. For the search under discussion, 4 statements can be
defined:

s1 : cable_start = pointA, s2 : cable_end = pointC,

s3 : cable_start = pointB, s4 : cable_end = pointD (1)

and an expression that would bring the correct data set is:

query1 = (s1 ∧ s2) ∨ (s3 ∧ s4) (2)

However, the existing system architecture presents a constraint: query1 is unfeasible due
to the system’s limitation to only allow horizontal connections using the AND operator and

vertical connections using the OR. This restriction points to a notable rigidity in the FENCE
system’s design.

In response to this constraint, users frequently adopt an alternative query, shown in Fig-
ure 1, to meet the search criteria:

query2 = (s1 ∨ s3) ∧ (s2 ∨ s4) (3)

Upon detailed examination of query2, it becomes evident that this formulation would
yield results that do not align with the intended search filter. For example, scenarios where
both s1 and s4 are true would be included. The new search implementation was designed
with the goal to circumvent this and other existing limitations.

Figure 1: Query workspace Figure 2: Fence search results

In the presentation view, the table behavior and style are also limited by the options pro-
vided in the JSON configuration file: while in most cases this is sufficient, it becomes a major
issue for dynamic content and complex behavior. The pagination system also does not work
as expected: if a result set had a total of 500 entries split into 5 pages, downloading the search
results, text filtering them, and sorting results would only take the first page into considera-
tion. Last, the save search feature, only works in the browser’s local storage. FENCE’s Super
Search also lacked an API to expose that data in a manner that is agnostic to the data reader
and did not offer any sort of preloaded/cached searches. However, even with its limitations,
the FENCE Super Search was a core functionality not only in LHCb’s Membership, LBEMS,
and Cables systems but also for other systems in ATLAS and ALICE, having thousands of
users. Hence, it had to be replaced carefully, the new solution providing the same features
and addressing its shortcomings.

3 Glance Search Library

The Glance Search Library was developed to address the issues mentioned in the FENCE
Super Search and provide its missing features. It is part of a broader effort to rewrite the
applications, moving away from FENCE and using a more modern open-source software

stack more aligned to industry standards and with a larger community contributing to their
development and maintenance. The library is composed of two code repositories: one for the
backend functionality, and another for the frontend web components.

3.1 Architectural changes

The main points to be addressed in the new architectural proposal were the high coupling and
limited customization in the FENCE systems. The solution chosen was a combination of the
Layered and Hexagonal architectures, following a proposal from [6]. The applications were
divided into 3 layers. The innermost layer is the application Domain, where all business
rules are defined in PHP classes. The mid-layer called Application, exposes the system use
cases and orchestrates domain classes to perform actions. The outermost Infrastructure
layer connects the application use cases to external services such as databases and REST
interfaces. The frontend is completely independent of the rest of the application, having
access to the domain information through REST APIs.

Figure 3: Application architecture organization

3.2 Glance Query Language and backend query translation

The systems’ server side uses the Glance Search Library to translate a query string into a
SQL filter creating a WHERE clause according to a set of parameters defined in a JSON
configuration file. It differs from the FENCE’s Super Search by limiting the scope of the
JSON configuration file, being only used to map query string elements to database columns
and caching settings, while the frontend interfaces do not depend on this file. Analyzing the
same cables search example as in section 3 to find all cables that start in point A and end
in point C plus all cables that start in point B and end in point D, now the option capable
of generating the correct set of results (query1) can be composed. This is because the query
composition using the Glance Query Language (GQL) is agnostic to any user interface and its

possible limitations. The GQL elements will be introduced based on the following queries:

query1 ≡ queryS tring1 : (start_point = PointA AND end_point = PointC)
OR (start_point = PointB AND end_point = PointD)

query2 ≡ queryS tring2 : (start_point = PointA OR start_point = PointB)
AND (end_point = PointC OR end_point = PointD)

The elements in the queries above are categorized in Table 1.

Element Category Identifier
Start point Search Field f1
End point Search Field f2
= Search Operator o1

AND Search Conjunction AND
OR Search Conjunction OR

Point A, B, C, D Search Value v1, v2, v3, v4
(Grouping Mark (
) Grouping Mark)

Table 1: Search elements

A Search Statement is a combination of a Search Field, Operator, and Value. Four
statements are created from the queries above where “⌢" represents concatenation: s1 :
f1 ⌢ o1 ⌢ v1, s2 : f2 ⌢ o1 ⌢ v3, s3 : f1 ⌢ o1 ⌢ v2, and s4 : f2 ⌢ o1 ⌢ v4. The query
strings can now be rewritten as a function of the statements: queryS tring1: (s1 ∧ s2) ∨ (s3 ∧

s4) and queryS tring2: (s1 ∨ s3) ∧ (s2 ∨ s4). GQL is designed to be decoupled from interface
and infrastructure and their limitations, meaning that both queries above are valid, solving
the aforementioned FENCE issue where queryS tring1 cannot be created.

The categories defined in Table 1, are part of the Glance Search Library Domain PHP
classes. These classes take a raw string as input and have the knowledge to convert themselves
to a part of a SQL WHERE clause. They are orchestrated by the Application-layer using
interfaces of the Infrastructure layer. The library’s use cases are exposed by the following
methods:

• RunSearchWithAppliedFilters - loads a list of entities filtered according to a query
string based on GQL alongside with any search parameters such as pagination;

• SaveSearch - saves in a database a search layout, including the query and pagination;

• GetSearchDetails - lists all searches saved by a given user;

• DeleteSearch - deletes saved search.

Glance Search Library application-layer classes are used in the API controllers of LHCb
Web applications and are loaded as dependencies using Composer, a Dependency Manager
for PHP. A sequence of backend events to run a search includes:

1. An HTTP GET request with a “queryString" parameter reaching an API endpoint (e.g.:
lbfence.cern.ch/lbems/cables/search);

2. Routing of the request to the infrastructure HTTP controller responsible for handling
it;

3. Parsing incoming GET parameters and providing a config-
uration that maps search fields to database columns for
LHCb\Search\Application\RunSearchWithFilters\RunSearchHandler.php;

4. Translation of the “queryString" into a SQL WHERE clause by the handler, using
Domain classes and adding it to a base search defined in the configurations file;

5. Usage of the Infrastructure repository class to run the SQL and fetch results, exposed
to the reader as a JSON.

Finally, having the REST API with the search endpoints decoupled from frontend inter-
faces, allows the deployment of automated jobs that run in the server executing the most
common searches and caching their results for improved performance.

3.3 Frontend Web components

GQL provides a standardized way of searching and extracting information from the LHCb’s
Web applications. Power users can manually write it and download the search results from
CLI tools, the frontend interfaces can use it to fetch data from APIs and external applications
can also query LBEMS/Cables, Membership, and RP Survey for their own use. However,
writing the raw query is not an option for the entire user base.

The client-side code is now completely separate from the server-side, following a
Component-based Architecture with Vue.js allowing all frontend application code to be di-
vided into independent, reusable, and easily tested components. Compared to FENCE’s
configuration-file-based approach, Web components provide greater flexibility for develop-
ers to choose which parts to include on their webpage interfaces. However, it could also lead
to more boilerplate code being written when creating an advanced search web interface. To
prevent this issue, all the key search components were wrapped in a SuperSearch.vue higher
level component that is placed in a view (web page) which then passes to the wrapper a
JavaScript object with all the required information to build the basic visualization elements
such as a list of available Search Fields, Operators, and Values and the results columns to
be displayed. A major differentiating factor compared to FENCE’s Super Search is Vue’s
reactive two-way binding which ensures that any changes to the model are automatically re-
flected in the view, and conversely, any change in the view instantly updates the model. A
concrete example would be a CablesSearchInterface.vue using the SuperSearch.vue compo-
nent: it passes a JavaScript object to initially configure the search interface, but this object
can now be mutated, and the interface will react to it. This is useful, for example, if a user
triggers the insertion of a new column in the search results.

Vue.js provides a content distribution API known as slots, which is a powerful tool for
building flexible and reusable components. Slots allow developers to compose components
in a way that the component’s content can be defined from outside the component itself. This
gives developers more control over the design and structure of the component and how it can
be reused. Slots can also have default content, which will be used when the parent component
does not overwrite the slot. Vue’s slot API provides the flexibility to handle interfaces with
more complex behavior that FENCE never could.

The main search components are highlighted in Figure 4. All of them can be overwritten
by the parent component in case the default behavior does not fit the application requirements.
Figure 5, exemplifies a common use case of the application replacing the entire advanced
search section with a select input for simpler web interfaces. The input content is then used
by the frontend to generate a GQL query string that is used to fetch information from the
system REST API. The sorting and download shortcomings the FENCE Super Search had

were addressed in the new search by removing the pagination parameters and re-fetching the
information from the API in order to ensure the entire result set is downloaded and sorted.
Saving a search is now possible using Vuex, a state management pattern library for Vue.js
applications. It serves as a centralized store for all the components in an application, with
rules ensuring that the state can only be mutated in a predictable way. The Vuex store state
can then be persisted in the database through the SaveSearch endpoint exposed by the REST
APIs.

Figure 4: Super Search components highlighted

Figure 5: Simple search interface, replacing the advanced search slot by a simpler select input

4 Conclusion

The Glance Search Library is a successful and powerful replacement tool for the legacy
FENCE Super Search. Currently, it powers 10 web interfaces in all LHCb systems pro-
vided by Glance. It also fixed FENCE pagination-related shortcomings and introduced new
functionality such as the persistent saved searches. Another indicator of the new solution’s
success is its adoption by external applications that are now using it to populate their web
interfaces, preventing data duplication inside LHCb. The main goal currently is to expand
the usage of the library in the systems managed by Glance in ATLAS and ALICE.

References

[1] The LHCb Collaboration, A Augusto Alves Jr, L M Andrade Filho, A F Barbosa, I
Bediaga, G Cernicchiaro, G Guerrer, H P Lima Jr, A A Machado, J Magnin et al. The
LHCb Detector at the LHC. J. Inst. 3 (2008) S08005.

[2] Lyndon Evans and Philip Bryant. LHC Machine. J. Inst. 3 (2008) S08001.
[3] ATLAS collaboration. The ATLAS Experiment at the CERN Large Hadron Collider ,

JINST 3 (2008) S08003.
[4] ALICE collaboration. The ALICE experiment at the CERN LHC, JINST 3 (2008) S08002.
[5] B Lange, C Maidantchik, K Pommes, V Pavani, B Arosa, I Abreu, and on behalf of

the ATLAS Collaboration. An object-oriented approach to deploying highly configurable
Web interfaces for the ATLAS experiment. J. Phys.: Conf. Ser. 664 (2015) 062026.

[6] M Noback. Advanced Web Application Architecture. 2020. ISBN: 978-90-821201-6-5.
[7] C Maidantchik, F F Grael, K K Galvão, and K Pommès. Glance project: a database

retrieval mechanism for the ATLAS detector. J. Phys.: Conf. Ser. 119 (2008) 042020.

https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1742-6596/664/6/062026
http://dx.doi.org/10.1088/1742-6596/119/4/042020

	Introduction
	The older Fence Super Search
	Glance Search Library
	Architectural changes
	Glance Query Language and backend query translation
	Frontend Web components

	Conclusion

