
Darshan for HEP applications

Rui Wang1∗, Shane Snyder1∗∗, Douglas Benjamin2, Zhihua Dong2, Patrick Gartung3, and
Kenneth Herner3

1Argonne National Laboratory (US)∗∗∗
2Brookhaven National Laboratory (US)
3Fermi National Accelerator Laboratory (US)

Abstract. Modern HEP workflows must manage increasingly large and com-
plex data collections. HPC facilities may be employed to help meet these work-
flows’ growing data processing needs. However, a better understanding of the
I/O patterns and underlying bottlenecks of these workflows is necessary to meet
the performance expectations of HPC systems.
Darshan is a lightweight I/O characterization tool that captures concise views
of HPC application I/O behavior. It intercepts application I/O calls at runtime,
records file access statistics for each process, and generates log files detailing
application I/O access patterns.
Typical HEP workflows include event generation, detector simulation, event
reconstruction, and subsequent analysis stages. A study of the I/O behavior of
the ATLAS simulation and filtering stage, and the CMS simulation workflow
using Darshan is presented, including insights into the I/O operations and data
access size.

1 Introduction

Modern HEP workflows are increasingly scaled and complex for various data processing
and analysis purposes. They used to run on large computing farms or the worldwide Grid.
However, data processing needs keep growing rapidly. Employing HPC facilities may help
meet these needs of the workflows so that the time required to make new scientific insights
can be reduced.

I/O behavior is one of HEP workflows’ most significant limiting factors, especially as the
collected event data size grows and varies in order of magnitude. Therefore, the ability to in-
strument and monitor the I/O behavior of the HEP workflows could be critical to characterize
and understand their I/O patterns and underlying bottlenecks. Solving the potential bottle-
necks would help the HEP workflows meet the HPC systems’ performance expectations.

2 Darshan

Darshan[1] is an I/O characterization tool developed specifically for the instrumentation of
HPC applications, utilizing a lightweight, modular, and transparent design for users. To avoid
∗e-mail: Rui.Wang@cern.ch
∗∗e-mail: ssnyder@mcs.anl.gov
∗∗∗This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics,

High Energy Physics Center for Computational Excellence (HEP-CCE).



perturbing applications, Darshan uses a bounded amount of memory and defers all expensive
log writing operations until the application shutdown. A modular software architecture and
file format eases the extension of the tool to account for new sources of I/O instrumentation
data (e.g., a new I/O library). Utilizing Darshan requires no modifications to the user’s source
code, enabling it to be transparently integrated into applications with minimal effort on behalf
of users. These design principles have led to Darshan being commonly deployed at HPC
facilities to automatically characterize the I/O behavior of production applications.

As the application executes, Darshan instrumentation modules are responsible for instru-
menting I/O calls and capturing other I/O characterization data from various components of
the I/O subsystem. Currently implemented instrumentation modules include:

• POSIX and STDIO: instrument low-level file I/O interfaces

• MPI-IO: instrument MPI’s parallel I/O interface

• HDF5: instrument the HDF5 library, commonly used for managing scientific data

• Lustre: capture Lustre file system striping parameters

• Heatmap: capture per-process histograms of I/O activity (read/write volumes) over time
for various I/O interfaces (POSIX, MPI-IO, STDIO)

• DXT[2]: optional modules to capture full I/O traces for POSIX and MPI-IO interfaces

No specific ROOT-IO instrumentation module has been implemented yet. The ROOT I/O
activities shown in Sec. 3 are captured via POSIX interface calls.

For default modules (i.e., not DXT), Darshan captures a bounded set of statistics for
each file accessed by the application, including counters (e.g., operation counts, total bytes
moved), timing information (e.g., total time spent doing read, write, and metadata operations),
and other data. If explicitly enabled by users, DXT tracing modules can capture fine-grained
I/O traces that may enable deeper insights into I/O behavior. When the application is shut-
ting down, the Darshan core library retrieves instrumentation records from active modules,
compresses the records, and writes them in a portable log file format. The generated Darshan
log file can then be analyzed using Darshan analysis tools, especially using PyDarshan [3], a
recently developed Python framework for extracting, summarizing, and visualizing log data.

Several enhancements have been made to Darshan for HEP use cases. First, Darshan has
been modified to enable its use outside message-passing interface (MPI) applications. Break-
ing Darshan’s dependence on MPI allows its use in new contexts, including HEP workflows,
which have traditionally not been MPI-based. Second, Darshan has added a capability for
instrumenting forked processes since some HEP workflows use forked children processes to
split and parallelize workloads. Lastly, Darshan has improved its runtime configuration abil-
ities, allowing users to allocate more memory for instrumentation or to focus instrumentation
on specific files.

In an upcoming release, Darshan is adding the ability to instrument interfaces for the Intel
DAOS storage system. This new-to-HPC object-based storage system will be deployed on
the upcoming Aurora system at the Argonne Leadership Computing Facility (ALCF). DAOS
provides appealing I/O performance characteristics, so detailed instrumentation is critical to
understanding how applications (including HEP workflows) use this novel storage system.
PyDarshan is also being refactored to support aggregation and visualization of Darshan data
across multiple logs generated by the stages or forked processes of a HEP workflow as de-
tailed in Sec. 3.



3 Case study of the HEP workflow I/O

The HEP workflow is designed to process data fast and repeatably. Simulation or detec-
tor data reconstruction is commonly broken into a few stages: (1) Generation (generate MC
events for simulation) (2) Simulation (simulate the generated MC events/digitize the raw
detector readout) (3) Reconstruction (reconstruct the physics objects and the events) (4) Fil-
tering (dropping events in a disk-to-disk copy) (5) Analysis (physics analysis by users) as
shown in Fig. 1.

Figure 1: Major stages of a typical HEP workflow for simulated and collected data process-
ing.

This case study used two workflows developed by Collider Physics for data processing.

• ATLAS software

– ATLAS offline software Athena
The ATLAS experiment [4] at the Large Hadron Collider (LHC) at CERN uses Athena
[5] as its main simulation, reconstruction, and analysis software framework, and ROOT
[6], a generic experiment-independent C++ toolkit, for its I/O and storage.
Athena was initially written to run serially. It was extended to support multi-process
parallelism for Run 2, so-called AthenaMP [7], where independent parallel workers are
forked from the main process with shared memory allocation as shown in Fig. 2. In the
early implementation, each worker produced its own output file, with these files eventu-
ally read and merged via a serial standalone merge process. To address the inefficiency
caused by re-reading and serially merging worker output, a SharedWriter process has
been designed to be executed alongside the other workers, retrieving the output data ob-
jects from the workers’ memory and merging them on the fly. In the meantime, as the
hardware is moving to have not only more cores but also more threads, the framework
is in transit to AthenaMT [9] to support multi-threading in Run3. The AthenaMT uses
the Gaudi task scheduler to map tasks to kernel threads. The tasks share a single pool of
heap memory.

– ATLAS xAOD analysis
Starting from Run2, ATLAS uses xAOD (Analysis Object Data) [10], a ROOT-readable
event data model, for both reconstructed object storage and analysis. A subset of
the events is selected with tailored reconstruction information stored in derived AOD
(DAOD) formats for specific physics analysis. Two analysis formats in Run3 are the
DAOD_PHYS and DAOD_PHYSLITE, where the latter contains already calibrated
physics objects.

• CMS software CMSSW

The CMS collaboration [11] at the LHC at CERN uses CMSSW [12], an overall collec-
tion of software built around a Framework, an Event Data Model (EDM), and Services
needed by the simulation, calibration and alignment, and reconstruction modules that pro-
cess event data for physics analysis. The framework uses the job-specific configuration
file to configure the workflow stages at run time and ROOT for its I/O and storage. The



(a) Atlas AthenaMP Schematic view

0

69
9

13
99

20
99

Time (s)

main
evt_counter

sharedWriter/merge
worker_0
worker_1
worker_2
worker_3
worker_4
worker_5
worker_6
worker_7

Pr
oc

Time bins: 200

Data@LCRC

athenaMP_shared (PHYS)
8procs/threads

100

102

104

106

Da
ta

 (B
): 

re
ad

, w
rit

e

(b) Data access Heatmap

Figure 2: (2a) shows the Atlas AthenaMP Schematic view [8]. (2b) shows an example of the
data access visualization of the main and the eight forked worker processes in an AthenaMP
run.

framework supports multi-threading. The EDM is a C++ object container for all RAW and
reconstructed data related to a particular collision in ROOT format.

The ATLAS and CMS workflow stages that have been looked at are summarized in Ta-
ble 1. Three stages have been explored individually under the ATLAS workflow: the simula-
tion stage (CPU-intensive), the filtering stage (I/O-intensive), and the analysis stage (ROOT-
based). For CMS, the generation, simulation, reconstruction, and filtering stages were ex-
plored within a single job. These jobs have also been repeated on various hardware and
filesystems. Table 1 provides a few typical runs’ running time, read/write data, and POSIX
transfer rate.

Understanding the breakdown of the I/O operations by types such as read, write, open,
stat, seek, mmap, and fsync for each workflow stage helps gain insights into the software and
various job configurations. ATLAS and CMS workflows share similar general I/O behavior



Stage Workflow Job config
(events * threads)

Running time
(s)

I/O read/write
(MB)

POSIX transfer
(MB/s)

Gen CMS 100 * 16 680 ∼0.007 / ∼193 ∼49
Sim ATLAS 50 * 8 7267 ∼314 / ∼380 ∼90

CMS 100 * 16 1648 ∼188 / ∼6831 ∼266.6
Rec CMS 100 * 16 1019 ∼5110 / ∼1857 ∼128.9
Filtering ATLAS 3600 * 8 3800 (main)

1908 (worker)
∼1300 / ∼0.32 (worker)
∼3.13 / ∼485 (writer)

∼53.1 (main)
∼326.8 (worker)

CMS 100 * 16 383 ∼431 / ∼25 ∼321.4
Ana ATLAS 405K * 1 1319 ∼6709 / ∼106 ∼84.5

Table 1: This table summarizes the stages explored under ATLAS and CMS workflows. The
ATLAS simulation and derivation jobs ran on the Broadwell nodes on LCRC at ANL with
GPFS shared filesystem. The ATLAS analysis job ran on the SDCC nodes at BNL with GPFS
shared filesystem. The CMS Generation, simulation, reconstruction, and filtering job ran on
the Haswell nodes on Cori at NERSC with SSD and Lustre shared filesystem.

characteristics over stages. There are an equal number of writes and seeks in Generation,
Simulation (Fig. 3a, 3c), Reconstruction, and SharedWriter process under the ATLAS Filter-
ing stage (Fig. 3b). These write operations are sequential or consecutive (eg. Fig. 4a). The
rest of the stages, the CMS Filtering stage, the worker process under the ATLAS Filtering
stage, and the ATLAS Analysis stage have much more seeks than reads (Fig. 3b, 3d). Among
these reads, the operations are majorly sequential (eg. Fig 4b), which means less random
access to data.

The access size of the reads and writes has also been looked into. Compared to access
sizes commonly used to access HPC storage systems, all stages mainly do small read/write
at O
(
1KB
)

(Eg. Fig. 5a, 5b), except for the ATLAS Analysis stage where the reads are
mainly at O

(
100KB

)
(Eg. Fig. 5c). This could be a potential bottleneck in the ATLAS and

CMS workflow. The small reads may be related to ROOT TTreeCache vector I/O support
on certain file systems. The ROOT data sieving concept (overread) might be used for this.
On the other hand, the TFileCacheWrite offered by ROOT could help minimize the small
writes. However, both should be studied by the experiments.

4 Conclusion

The I/O activities of various stages of the ATLAS and CMS workflows have been character-
ized at scale using Darshan, including the amount of data movement in various phases, the
ROOT I/O patterns, and the sizes of the data access. This characterization data can be used to
guide performance optimizations that better align with established best practices for HPC I/O.
Small access size has been found in both workflows. It could be a potential bottleneck that
should be paid attention to for future HEP workflow developments. In addition to the ATLAS
and CMS workflow, the Deep Underground Neutrino Experiment (DUNE) workflow at Fer-
milab [13] has also been looked into. The studies demonstrate that Darshan is a lightweight
tool that can assist in understanding the I/O behavior of HEP workflows. With Darshan, a
better understanding of the HEP workflow I/O patterns will guide the further tuning of the
ROOT and HDF5 (used for DUNE Raw data storage) I/O patterns to better inform storage
capabilities requirements at HPC facilities, uncover the I/O bottlenecks in current workflows
when deployed at scale on both CPU and GPU platforms, and provide recommendations for
data format and access patterns for future HEP workloads.



102

103

104

105

Op
s

AthenaMP
50 event(s) per proc/thread

102

103

104

105

Op
s

AthenaMP+SharedWriter
50 event(s) per proc/thread

102

103

104

105

Op
s

AthenaMT
50 event(s) per proc/thread

posix read
posix write
posix open
posix stat
posix seek
posix mmap
posix fsync

m
ai

n
ev

t_
co

un
te

r
m

er
ge

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

0.0
0.5
1.0

Ra
tio

m
ai

n
ev

t_
co

un
te

r
sh

ar
ed

_w
rit

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er

0.0
0.5
1.0

Ra
tio

m
ai

n

0.0
0.5
1.0

Ra
tio

(a) Simulation (AthenaMT)

102

103

104

105

106

Op
s

AthenaMP
PHYS

3600 event(s) per proc/thread

102

103

104

105

106

Op
s

AthenaMP+SharedWriter
PHYS

3600 event(s) per proc/thread

102

103

104

105

106

Op
s

AthenaMP+SharedWriter(parallelCompression)
PHYS

3600 event(s) per proc/thread
posix read
posix write
posix open
posix stat
posix seek
posix mmap
posix fsync

m
ai

n
ev

t_
co

un
te

r
m

er
ge

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

0.0
0.5
1.0

Ra
tio

m
ai

n
ev

t_
co

un
te

r
sh

ar
ed

_w
rit

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er

0.0
0.5
1.0

Ra
tio

m
ai

n
ev

t_
co

un
te

r
sh

ar
ed

_w
rit

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er

0.0
0.5
1.0

Ra
tio

102

103

104

105

106

Op
s

AthenaMP
PHYS

3600 event(s) per proc/thread

102

103

104

105

106

Op
s

AthenaMP+SharedWriter
PHYS

3600 event(s) per proc/thread

102

103

104

105

106

Op
s

AthenaMP+SharedWriter(parallelCompression)
PHYS

3600 event(s) per proc/thread
posix read
posix write
posix open
posix stat
posix seek
posix mmap
posix fsync

m
ai

n
ev

t_
co

un
te

r
m

er
ge

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

0.0
0.5
1.0

Ra
tio

m
ai

n
ev

t_
co

un
te

r
sh

ar
ed

_w
rit

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
0.0
0.5
1.0

Ra
tio

m
ai

n
ev

t_
co

un
te

r
sh

ar
ed

_w
rit

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er
wo

rk
er

wo
rk

er

0.0
0.5
1.0

Ra
tio

(b) Filtering (AthenaMP)

cmsRun (1/28/2021) 1 of 3

jobid: 2185 uid: 72001 nprocs: 1 runtime: 1648 seconds

I/O performance estimate (at the POSIX layer): transferred 7019.2 MiB at 266.57 MiB/s
I/O performance estimate (at the STDIO layer): transferred 0.0 MiB at 2.15 MiB/s

 0

 20

 40

 60

 80

 100

PO
SIX

STD
IO

P
e

rc
e

n
ta

g
e

 o
f 

ru
n

 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

−20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

Read Write Open Stat Seek Mmap Fsync

O
p

s
 (

T
o

ta
l,
 A

ll 
P

ro
c
e

s
s
e

s
)

I/O Operation Counts

POSIX STDIO

 0

 20000

 40000

 60000

 80000

 100000

 120000

0−100

101−1K

1K−10K

10K−100K

100K−1M

1M
−4M

4M
−10M

10M
−100M

100M
−1G

1G
+

C
o

u
n

t 
(T

o
ta

l,
 A

ll 
P

ro
c
s
)

POSIX Access Sizes

Read Write

Most Common Access Sizes
(POSIX or MPI-IO)

access size count

POSIX

130 1758
3076 78

120 42
188 22

File Count Summary
(estimated by POSIX I/O access offsets)

type number of files avg. size max size
total opened 7 1004M 6.7G

read-only files 3 65M 193M
write-only files 3 2.3G 6.7G
read/write files 0 0 0

created files 3 2.3G 6.7G

cmsRun step2 DIGI L1TrackTrigger L1 DIGI2RAW HLT PU.py

(c) Simulation (CMSSW)

cmsRun (1/28/2021) 1 of 3

jobid: 3698 uid: 72001 nprocs: 1 runtime: 383 seconds

I/O performance estimate (at the POSIX layer): transferred 456.7 MiB at 321.38 MiB/s
I/O performance estimate (at the STDIO layer): transferred 0.0 MiB at 2.61 MiB/s

 0

 20

 40

 60

 80

 100

PO
SIX

STD
IO

P
e

rc
e

n
ta

g
e

 o
f 

ru
n

 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

−50000

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

Read Write Open Stat Seek Mmap Fsync

O
p

s
 (

T
o

ta
l,
 A

ll 
P

ro
c
e

s
s
e

s
)

I/O Operation Counts

POSIX STDIO

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

0−100

101−1K

1K−10K

10K−100K

100K−1M

1M
−4M

4M
−10M

10M
−100M

100M
−1G

1G
+

C
o

u
n

t 
(T

o
ta

l,
 A

ll 
P

ro
c
s
)

POSIX Access Sizes

Read Write

Most Common Access Sizes
(POSIX or MPI-IO)

access size count

POSIX

300 154
271 108
322 87
293 72

File Count Summary
(estimated by POSIX I/O access offsets)

type number of files avg. size max size
total opened 7 269M 1.9G

read-only files 3 619M 1.9G
write-only files 2 13M 26M
read/write files 0 0 0

created files 2 13M 26M

cmsRun step4 PAT PU.py

(d) Filtering (CMSSW)

Figure 3: The number of operations (read, write, open, stat, seek, mmap, and fsync) of
ATLAS&CMS simulation and filtering jobs. (3a) and (3b) only include POSIX operations
on the input and output files with the fraction of operations shown in the bottom panels. (3c)
and (3d) include POSIX and STDIO operations on the input, output, and configuration files.

This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy
Physics, and High Energy Physics Center for Computational Excellence (HEP-CCE). This work is in
part supported by the Director, Office of Advanced Scientific Computing Research, Office of Science,
of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357; in part supported by the
Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office
of Science and National Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support the nation’s exascale



python (12/15/2022) 3 of 3

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

Read Write

O
p

s
 (

T
o

ta
l,
 A

ll 
P

ro
c
s
)

POSIX I/O Pattern

Total
Sequential

Consecutive

sequential: An I/O op issued at an offset greater than where the previous I/O op ended.
consecutive: An I/O op issued at the offset immediately following the end of the previous I/O op.

Variance in Shared Files (POSIX and STDIO)
File Processes Fastest Slowest σ

Suffix Rank Time Bytes Rank Time Bytes Time Bytes

python ./runargs.Derivation.py –nprocs=8

(a) Shared Writer@Filtering (AthenaMP)

cmsRun (1/28/2021) 3 of 3

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

Read Write

O
p

s
 (

T
o

ta
l,
 A

ll 
P

ro
c
s
)

POSIX I/O Pattern

Total
Sequential

Consecutive

sequential: An I/O op issued at an offset greater than where the previous I/O op ended.
consecutive: An I/O op issued at the offset immediately following the end of the previous I/O op.

Variance in Shared Files (POSIX and STDIO)
File Processes Fastest Slowest σ

Suffix Rank Time Bytes Rank Time Bytes Time Bytes

cmsRun step4 PAT PU.py

(b) Filtering (CMSSW)

Figure 4: Sequential I/O: next access came somewhere after the last one in the file.
Consecutive I/O: next access starts with the byte immediately following the last access.

computing imperative; and in part supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Comput-
ing (SciDAC) program. This research used resources at the Argonne Leadership Computing Facility
(ALCF), Argonne Laboratory Computing Resource Center (LCRC), NERSC, and BNL Scientific Data
and Computing Center (SDCC).

References

[1] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, K. Riley, 24/7 characterization of
petascale I/O workloads, in 2009 IEEE International Conference on Cluster Computing
and Workshops (IEEE, 2009), pp. 1–10

[2] C. Xu, S. Snyder, O. Kulkarni, V. Venkatesan, P. Carns, S. Byna, R. Sisneros,
K. Chadalavada, DXT: Darshan eXtended Tracing (2019), https://www.osti.gov/
biblio/1490709

[3] PyDarshan, https://pypi.org/project/darshan/
[4] ATLAS Collaboration, JINST 3, S08003 (2008)
[5] Tech. rep., CERN, Geneva (2021), all figures including auxiliary figures are avail-

able at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-
PUB-2021-001, https://cds.cern.ch/record/2767187

[6] R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet, L. Moneta, V. Vassilev,
S. Linev, D. Piparo, G. GANIS et al., Root-project/root: V6.18/02, Zenodo (2019),
https://doi.org/10.5281/zenodo.3895860

[7] P. Calafiura, C. Leggett, R. Seuster, V. Tsulaia, P.V. Gemmeren, o.b.o.t.A. Collaboration,
Journal of Physics: Conference Series 664, 072050 (2015)

[8] AthenaMP Schematic, https://twiki.cern.ch/twiki/pub/AtlasPublic/
ComputingandSoftwarePublicResults



python (10/5/2022) 1 of 3

jobid: 28045 uid: 8391 nprocs: 1 runtime: 7267 seconds

I/O performance estimate (at the POSIX layer): transferred 691.6 MiB at 89.81 MiB/s
I/O performance estimate (at the STDIO layer): transferred 2.2 MiB at 2.35 MiB/s

 0

 20

 40

 60

 80

 100

PO
SIX

STD
IO

P
e

rc
e

n
ta

g
e

 o
f 

ru
n

 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

Read Write Open Stat Seek Mmap Fsync

O
p

s
 (

T
o

ta
l,
 A

ll 
P

ro
c
e

s
s
e

s
)

I/O Operation Counts

POSIX STDIO

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o

u
n

t 
(T

o
ta

l,
 A

ll 
P

ro
c
s
)

POSIX Access Sizes

Read Write

Most Common Access Sizes
(POSIX or MPI-IO)

access size count

POSIX

3462 1015
3937 435
3602 435
4093 290

File Count Summary
(estimated by POSIX I/O access offsets)

type number of files avg. size max size
total opened 23 35MiB 378MiB

read-only files 13 8.4MiB 109MiB
write-only files 4 95MiB 378MiB
read/write files 4 77MiB 303MiB

created files 8 86MiB 378MiB

/cvmfs/atlas-nightlies.cern.ch/repo/sw/master Athena x86 64-centos7-gcc11-opt/sw/lcg/releases/LCG 101 ATLAS 26/Python/3.9.6/x86 64-
centos7-gcc11-opt/bin/python -tt

/cvmfs/atlas-nightlies.cern.ch/repo/sw/master Athena x86 64-centos7-gcc11-opt/2022-10-04T2101/Athena/23.0.7/InstallArea/x86 64-centos7-
gcc11-opt/bin/athena.py –stdcmalloc

–preloadlib=/lcrc/group/ATLAS/users/rwang/Argonne computing/PPS-CCE/darshan/build darshan/dev-fork-child-issue786/lib/libdarshan.so
–threads=8 runargs.EVNTtoHITS.py SimuJobTransforms/skeleton.EVGENtoHIT ISF.py

(a) Simulation (AthenaMT)

cmsRun (1/28/2021) 1 of 3

jobid: 2185 uid: 72001 nprocs: 1 runtime: 1648 seconds

I/O performance estimate (at the POSIX layer): transferred 7019.2 MiB at 266.57 MiB/s
I/O performance estimate (at the STDIO layer): transferred 0.0 MiB at 2.15 MiB/s

 0

 20

 40

 60

 80

 100

PO
SIX

STD
IO

P
e

rc
e

n
ta

g
e

 o
f 

ru
n

 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

−20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

Read Write Open Stat Seek Mmap Fsync

O
p

s
 (

T
o

ta
l,
 A

ll 
P

ro
c
e

s
s
e

s
)

I/O Operation Counts

POSIX STDIO

 0

 20000

 40000

 60000

 80000

 100000

 120000

0−100

101−1K

1K−10K

10K−100K

100K−1M

1M
−4M

4M
−10M

10M
−100M

100M
−1G

1G
+

C
o

u
n

t 
(T

o
ta

l,
 A

ll 
P

ro
c
s
)

POSIX Access Sizes

Read Write

Most Common Access Sizes
(POSIX or MPI-IO)

access size count

POSIX

130 1758
3076 78

120 42
188 22

File Count Summary
(estimated by POSIX I/O access offsets)

type number of files avg. size max size
total opened 7 1004M 6.7G

read-only files 3 65M 193M
write-only files 3 2.3G 6.7G
read/write files 0 0 0

created files 3 2.3G 6.7G

cmsRun step2 DIGI L1TrackTrigger L1 DIGI2RAW HLT PU.py

(b) Simulation (CMSSW)

(c) xAOD analysis

Figure 5: The POSIX read/write access sizes.

[9] C. Leggett, J. Baines, T. Bold, P. Calafiura, S. Farrell, P. van Gemmeren, D. Malon,
E. Ritsch, G. Stewart, S. Snyder et al., Journal of Physics: Conference Series 898,
042009 (2017)

[10] A. Buckley, T. Eifert, M. Elsing, D. Gillberg, K. Koeneke, A. Krasznahorkay, E. Moyse,
M. Nowak, S. Snyder, P. van Gemmeren et al., Journal of Physics: Conference Series
664, 072045 (2015)

[11] C. Collaboration, S. Chatrchyan, G. Hmayakyan, V. Khachatryan, A. Sirunyan,
W. Adam, T. Bauer, T. Bergauer, H. Bergauer, M. Dragicevic et al., Jinst 3, S08004
(2008)

[12] P. Elmer, B. Hegner, L. Sexton-Kennedy, Experience with the CMS event data model,
in Journal of Physics: Conference Series (IOP Publishing, 2010), Vol. 219, p. 032022

[13] A. Abed Abud et al. (DUNE) (2022), 2210.15665


