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Abstract. High Energy Physics software has been a victim of the necessity to

choose one implementation language as no really usable multi-language envi-

ronment existed. Even a co-existence of two languages in the same framework

(typically C++ and Python) imposes a heavy burden on the system. The role

of different languages was generally limited to well encapsulated domains (like

Web applications, databases, graphics), with very limited connection to the cen-

tral framework.

The new development in the domain of the compilers and run-time environ-

ments has enabled ways for creating really multilanguage frameworks, with

seamless, user-friendly and high-performance inter-operation of many lan-

guages, which traditionally live in disconnected domains (like C-based lan-

guages vs JVM languages or Web languages).

Various possibilities and strategies for creation of the true multi-language

frameworks are discussed, emphasizing their advantages and possible road

blocks.

1 An Ideal Multilanguage Application

In the pursuit of creating an ideal multilanguage application, the primary goal is to leverage

the strengths of various programming languages and tools seamlessly, promoting efficient

and effective development. Such an application would exhibit the following characteristics:

• Utilizing the Best Tools and Languages: The application should have the flexibility to

choose the best programming languages and tools for each specific task. This approach al-

lows developers to capitalize on the strengths and capabilities of each language, optimizing

performance and productivity.

• Transparent Interfaces, No Stubs: The interfaces between different components or mod-

ules of the application should be transparent, without the need for stubs or intermediary

layers. This transparency ensures that data and functionality flow seamlessly between dif-

ferent parts of the application.

• Data Sharing, No Proxies: Data sharing should occur directly, without the need for prox-

ies or complex data transformation layers. This approach simplifies data exchange and

minimizes the risk of data loss or errors during translation.

• Seamless Functionality: The application should works seamlessly. All components, re-

gardless of the languages they are written in, should collaborate harmoniously to deliver

the intended functionality.
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The vision of an ideal multilanguage application is no longer a distant dream. With

advancements in software development, interoperability, and the availability of powerful

language-agnostic tools and platforms, this ideal is becoming a reality.

Figure 1. An example of an ideal multi-language architecture.

2 The general multilanguage technology status

2.1 JVM Languages

2.1.1 Java

Java, a high-level programming language, has established itself as a dynamic and flexible

environment for software development. This robust ecosystem encompasses the Java Lan-

guage, the Java Virtual Machine (JVM) for runtime execution, and a comprehensive set of

standard libraries.

Java’s dynamic nature allows for introspection, memory management, and boasts a wide

array of monitoring and profiling tools, making it a versatile choice for various software

development needs.

2.1.2 Java performance

When assessing Java’s performance, it’s important to consider its characteristics in relation

to other programming languages and the types of tasks at hand. Java, like other languages,

exhibits varying levels of performance depending on the nature of the operations.

Java excels in areas like object-oriented (OO) features, memory management, parallelism,

and dynamic optimization. These strengths make it a preferred choice for a wide range of

applications, including large-scale, enterprise-level systems.

However, there are scenarios where Java may lag behind other languages. For example,

tasks involving matrix manipulations can be slower in Java, as it lacks native matrix support.

Additionally, some numerical operations may incur a performance cost, which is often a

trade-off for ensuring exact reproducibility of results. Java applications also typically have

a slower startup time compared to natively compiled languages, as the Java Virtual Machine

(JVM) needs to load and perform initial optimization.



Java applications tend to require more memory due to features like reflection, memory

management, and dynamic capabilities, which enable runtime optimizations. Comparing

Java’s performance to other languages is a nuanced task. When benchmarking Java, it’s

essential to evaluate its performance in real-world applications, considering not only the lan-

guage itself but also auxiliary functionality such as memory management, reflection, and

parallelism.

2.1.3 Other Languages in the Java Ecosystem

In the expansive Java ecosystem, there exists a realm of languages that seamlessly interoper-

ate with Java. These languages can coexist within the same runtime environment or compile

into standard Java class files, enabling developers to use their unique features alongside Java.

The interoperability of these languages is not merely a superficial connection; it is a pro-

found integration that allows for the free mixing of code, even via inheritance. This means

that developers can combine elements from different languages within their projects, opti-

mizing each language’s strengths for specific tasks.

Furthermore, these languages offer developers the flexibility to use them in both scripting

interpreted modes and compiled modes, adapting to the needs of the project at hand.

Java’s commitment to evolution is reflected in its incorporation of successful features

from these languages into its own ecosystem. For instance, Java has integrated functional

syntax from languages like Scala, enriching its own capabilities.

• Groovy (Apache): Groovy is a highly expressive scripting language that operates at a very

high level. It is particularly well-suited for scripting tasks and is employed in domains such

as graph databases. [1]

• Scala (Apache): Scala is a functional programming language that brings powerful func-

tional features to the Java ecosystem. Widely used in the context of Apache Spark, Scala

offers expressive capabilities for large-scale data processing. [2]

• Kotlin (Google): Kotlin is an officially supported language for Android development, of-

fering concise and expressive syntax. It has gained significant popularity in the Android

development community. [3]

• Clojure: Clojure is a Lisp-like language that is known for its simplicity and elegance. It

is designed for concurrent programming and is often used in scenarios where high concur-

rency is essential. [4]

• BeanShell: BeanShell provides interpreted and scripted Java capabilities. It allows devel-

opers to execute Java code interactively and is a valuable tool for various scripting tasks.

[5]

Following is an example of the Groovy script converting an SQL table into an XML file.

It can be either run as a shell script or compiled.

# ! / u s r / b i n / env groovy

s q l = Sql . n e w I n s t a n c e ( " j d b c : mysql : / / l o c a l h o s t / T uples " ,

" o rg . g j t .mm. mysql . D r i v e r " )

xml = new MarkupBui lder ( new F i l e ( " T up les . xml " ) )

xml . t a g S e t ( ) {

s q l . eachRow ( " s e l e c t * from t u p l e where run > 2 " ) {

row −> xml . t a g ( Run : row . run , Event : row . e v e n t )

}

}



2.2 Managed languages

Managed languages within the Java ecosystem encompass a wide array of languages originat-

ing from diverse backgrounds. These languages achieve interoperability with Java through

various means, such as re-implementation or the use of specific bridges and interfaces.

Among the multitude of managed languages that can coexist and interoperate with Java,

some notable examples include Go, Haskell, JavaScript, Lisp, OCaml, Pascal, PHP, Python,

R, Rexx, Ruby, Scheme, Smalltalk, Tcl, and many more. In fact, there are more than 100

languages available within the Java ecosystem, each offering unique features and capabilities.

2.3 C-world: Native Compilation

The C-world represents a domain of native code compilation, where languages are compiled

directly to machine code. This process is sometimes facilitated by pre-compiling to C, which

serves as an intermediary step in generating native code.

In contrast to managed languages like Java, the C-world often lacks high-level manage-

ment features such as reflection and introspection. Developers typically implement these

functionalities using in-house solutions, which can introduce compatibility issues and com-

plexities.

While C-world languages are often perceived as faster and smaller in terms of executable

size, these advantages come at a cost. One of the key drawbacks is the potential lack of

functionality, which may limit the capabilities of programs. Additionally, achieving repro-

ducibility and portability can be challenging in the C-world due to its low-level nature.

Higher-level concepts, which are readily available in managed languages, require com-

plex implementations in the C-world. Connecting managed JVM languages with low-level

C languages can be challenging and typically relies on direct interfaces like JNI (Java Na-

tive Interface) or JNA (Java Native Access) due to the unmanaged environment of C-world

languages.

3 GraalVM: A New Managed Environment

GraalVM[6] represents a cutting-edge managed environment that breaks the barriers between

different programming languages, offering support for both JVM-based and C-based lan-

guages. This innovative platform can execute code within a virtual machine (VM) or natively

on the host system.

One of the defining features of GraalVM is its status as a universal VM, where non-JVM

languages are placed on an equal footing with JVM languages. This level of parity enables

full interoperability between languages, fostering seamless integration and interaction. Un-

like traditional multi-language environments, where languages run side-by-side with frequent

data conversions, GraalVM facilitates a harmonious coexistence of languages within the same

VM.

GraalVM stands out for its exceptional speed and compact size, outperforming

OpenJVM[7]. This advantage is partially attributed to GraalVM’s implementation in Java,

whereas OpenJVM is primarily written in C++. GraalVM achieves full interoperability with

OpenJVM, allowing programs compiled for one environment to run in the other without has-

sle.

GraalVM is designed to be embedded in external applications, offering compatibility with

popular software projects such as Oracle, Apache, MySQL, and more. It can even generate

native executables and libraries using an Ahead Of Time (AOT) compiler, as opposed to the

Just-In-Time (JIT) compilation commonly used in the JVM world. This approach results in



a smaller footprint, faster startup times, and, in some cases, accelerated execution, although

it may entail a loss of certain dynamic features.

3.1 JIT vs AOT Compilation

When considering the generation of GraalVM native images, it becomes evident that this

approach often outperforms rewriting Java code in languages like C, C++, or Go. This dis-

tinction lies in the compilation strategy employed.

JIT, or Just-In-Time Compiler, is the typical approach used by Java and other languages.

It involves compiling code into bytecode (e.g., JAR files) and dynamically recompiling it at

runtime by the Java Virtual Machine (JVM). JIT compilation is complex due to the highly

dynamic nature of languages like Java, which attempt to understand runtime behavior. Dur-

ing compilation, it runs initialization code and creates the initial heap. AOT, or Ahead of

Time Compilation operates under the Close World Assumption, where all dependencies must

be available at compile time, unlike JIT, which allows dynamic loading. In certain cases,

hints about dynamic usage, such as reflection operations, class initialization, lambdas, anno-

tations, and service loaders, may need to be provided. Configuration for this can be placed in

the JAR’s META-INF/native-image directory, allowing for image tuning regarding memory

versus speed. However, it may still require a JVM at runtime for handling certain dynamic

operations. Ultimately, AOT compilation can transform a JAR into a native executable.

3.2 Supported languages and Expanding Ecosystem

GraalVM supports a growing number of languages. This expansion brings with it a suite

of new tools, including debuggers, profilers, monitors, and more. Additionally, GraalVM’s

flexibility extends to integration with various applications and toolkits.

The unique aspect of GraalVM is that multiple languages can coexist and execute within

the same environment. Unlike traditional multi-language programs, which often run multiple

languages side-by-side, GraalVM promotes seamless integration among these languages.

GraalVM’s tooling supports all specific languages it hosts. Unlike tools designed for

pre-compiled languages, these tools are capable of understanding and interacting with the

dynamic aspects of languages like Java, Python, and more.

GraalVM’s expansive ecosystem facilitates advanced integration possibilities. This

means, for instance, that you can use languages like Python with MySQL instead of relying

solely on SQL. This level of integration opens up new avenues for application development

and interoperability across a diverse range of languages and frameworks.

3.3 Polyglot capabilities

In the context of creating a multilanguage framework, polyglot programming provides tools

for seamless integration of various programming languages. Here are some key aspects:

• Objects are Never Copied and are Converted at the Latest Possible Time: Objects

are shared and manipulated among different languages without unnecessary copying. This

minimizes memory overhead and enhances performance. Data conversion into the client’s

physical format is deferred until the latest possible moment.

• Availability of All Tools: All tools and libraries are accessible to all languages. This

promotes a unified and productive development experience across languages.



• Multiple Ways to Call Foreign Languages: The framework offers several approaches for

interacting with foreign languages. They can be loaded and executed as a script, allowing

dynamic interaction. They can be also compiled into classes, enabling them to be used as

part of the broader application’s logic. In some cases, native images can be generated from

foreign language code, optimizing performance for specific use cases.

That approach allows each language to contribute its strengths to the overall application

while minimizing unnecessary overhead.

Interfacing with LLVM languages often demands more boilerplate code compared to in-

teractions within the same language. The differing memory and object models between JVM

languages and LLVM languages may require additional conversion and handling, which can

increase code complexity.

In some scenarios, it is more straightforward to compile JVM-based code into a native im-

age rather than attempting to interface JVM languages directly with LLVM languages. This

approach can simplify integration, enhance performance, and reduce potential complications

associated with cross-language communication.

Integrating C++ code with Java can be relatively simpler when C++ code calls Java com-

ponents. This is because Java has well-defined interfaces and can be loaded into the JVM

environment. In contrast, invoking C++ code from Java might involve more intricate inter-

actions due to the native nature of C++ and the complexities of JNI (Java Native Interface).

[8]

4 Where it is already useful now

The good news is that GraalVM is not just a theoretical concept; it is a practical and effective

solution that delivers real-world benefits. Its versatility and capabilities make it a valuable

tool in various scenarios, offering improved performance and integration options across dif-

ferent programming languages.

For JVM Languages:

• Simply utilizing the GraalVM JIT compiler can lead to performance improvements due to

better optimization.

• Compiling code with the GraalVM compiler can result in enhanced bytecode, contributing

to more efficient execution.

• Creating a Native Image using GraalVM may further boost performance, and it allows for

smoother integration with other languages and components.

For Scala:

• GraalVM’s JIT compiler excels at optimizing Scala code, often surpassing the capabilities

of OpenJVM’s JIT compiler by a factor of more than two.

For Python:

• GraalVM offers full interoperability with JVM languages, facilitating seamless interaction

and data sharing.

• Python applications may experience significant speed improvements, especially when com-

piled to a Native Image.

• Better interoperability with C/C++ can be achieved when Python code is compiled to a

Native Image.

For C/C++:



• GraalVM introduces the possibility to replace legacy C/C++ code with code written in

more modern languages or integrate existing components created in such languages.

• This can be achieved through compilation into a Native Image or integration within the

multi-language environment.

• Integration into frameworks and applications written in other languages (like Apache

Spark[9] becomes more accessible.

• GraalVM’s managed environment simplifies debugging, enhancing development work-

flows.

• In some cases, a performance boost can be achieved simply by recompiling code using

GraalVM, without the need for extensive modifications.

One of the standout advantages of GraalVM is its ability to rewrite and optimize specific

parts of a system in a more suitable language and then compile them into native executables.

This flexibility allows developers to leverage the strengths of different languages within a

single application, enhancing overall performance and functionality.

5 Intrinsic Limitations

While GraalVM offers remarkable capabilities, it is not without its intrinsic limitations. These

limitations, though manageable, should be considered in certain scenarios:

• Complex Configuration: Configuring GraalVM can be a complex task, particularly when

generating native images. In many cases, fine-tuning is required to achieve optimal results.

• Java Applications’ JVM Dependency: Some Java applications may still require the Java

Virtual Machine (JVM), even when compiled into a native executable. This dependency

arises when applications misuse reflection and construct classes at runtime.

• Trade-off: Compiling Java applications into native executables provides speed benefits,

particularly for small applications. However, for large and complex applications, the per-

formance gain is not as pronounced. Java is inherently efficient for real-life applications.

• Loss of Flexibility and Portability: The act of compiling code into a native executable re-

sults in a trade-off. While it may boost performance, it also leads to a loss of flexibility and

portability. The ability to run code on various platforms or modify it on-the-fly is restricted.

By compiling into a native executable, user may loose, for example, the possibility to mod-

ify language constructs at runtime (like dynamicaly adding methods). However, GraalVM

offers a possibility to profile the code and capture all actually used dynamic features at

runtime and add them into the native image.

• LLVM Language Co-existence: Integrating LLVM-based languages such as C, C++,

and Rust with JVM languages is not as straightforward as pairing two JVM languages.

This challenge arises due to differences in memory and object models. Values, objects,

and names must undergo conversion, and heavy communication across the LLVM-JVM

boundary can potentially slow down execution. In such cases, compiling JVM languages

into native images might be a more pragmatic approach.

6 External Complications

In addition to the intrinsic limitations of GraalVM, there are external complications that de-

velopers may encounter when working with a multi-language environment. These compli-

cations arise from the diverse landscape of programming languages and their specific build,

deployment, and versioning systems:



• Language-Specific Build Systems: Different languages often come with their own elabo-

rate build systems and makefiles, adding complexity to project management and compila-

tion processes.

• Language-Specific Deployment Systems: Deploying applications written in various lan-

guages can be complicated, with each language often employing its own deployment mech-

anisms. These systems may also silently install dependencies.

• Specific Bridges Between Languages: Integrated environments with multiple languages

may already make use of specific (proprietory) bridges or connectors. Internal implemen-

tations of projects might internally utilize other languages for certain tasks.

• Mixed-Language Implementations: Many projects, especially in the Python ecosystem,

include C code alongside the primary language code.

• Language Versions: Managing compatibility with different language versions and dialects

can be challenging. For example, the transition from Python 2 to Python 3 brought signifi-

cant changes, making it difficult to support all versions simultaneously.

• Project-Specific Environments: Complex project-specific environments, including de-

pendencies and configurations, further complicate multi-language development.

7 Future of Programming

The future of programming is poised for significant transformation. Programming frame-

works will evolve to encompass various components, including third-party black-boxes,

legacy systems, and solutions generated by artificial intelligence (AI). In many instances,

the implementation language of these components may be irrelevant, or even unknown, as

long as they fulfill their intended function.

This paradigm shift is already underway within the classical JVM (Java Virtual Machine)

environment, where languages are chosen based on their specific strengths. For example,

Scala excels in handling parallelism, while JavaScript shines in graphics-related tasks. The

integration of various languages will become seamless, akin to plug-and-play functionality.

One fundamental aspect of this evolution is the clear separation of data from algorithms

and logic. This demarcation is crucial and has been a long-time coming in software develop-

ment. By separating these components, developers gain the flexibility to rewrite and optimize

specific parts of a system in a more suitable language and then compile them into native ex-

ecutables. This approach enables the utilization of each language’s strengths within a single

application, leading to enhanced performance and functionality.
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