
Building a user-oriented notification system at CERN

Carina Antunes1,∗, Jose Semedo1,, Andreas Wagner1,, Emmanuel Ormancey1,, Caetan
Carpente1,, and Igor Jakovljevic1,

1CERN

Abstract. CERN, as many large organizations, heavily relies on a variety of
communication means for different use-cases and teams. The large amount of
notifications received every day leads to adverse consequences. For the users
receiving them, it is challenging to control and keep track of where, how and
when some information was received. At the same time for those sending and
maintaining the tools that deliver notifications, it is difficult to choose which
targets to adopt (email, messaging system and platforms, electronic devices,
etc.).
The CERN Notifications system aims at consolidating communication by pro-
viding a central place where notifications are created, maintained and dis-
tributed. CERN Notifications allows not only optimising the flow for the multi-
ple people and teams which are responsible for sending, but also empowers the
target users by respecting their preferences: how, where and when they receive
their notifications.
This paper describes the design and architecture of the CERN Notifications sys-
tem and its components, how it was designed with a flexible and highly mod-
ular architecture which allows adding further device targets with little effort.
Furthermore, it presents implementation details and the decisions behind those.
And last but not least it describes the features that empower users to choose how
to consume information sent to them.

1 Introduction

Notification models have for long been a topic without consensus. While there’s many users
content with the status quo, we argue that models where the subscriptions are managed by
the information producers (exemplified in Figure 1) present many challenges and pitfall, and
therefore propose an alternative to it. In this pattern, users have little control over their con-
figurations (when, where and how users prefer to receive notifications) and no easy way to
opt-out. Additionally managers may struggle to make choices which please all users and take
into account their preferences. This setup provides as well an added barrier to those without
technical knowledge, which have less access to producing notifications due to the lack of
knowledge on how to automate and manage information at scale. Ultimately, across all those
responsible for sending information, a lot of effort is spent on maintaining similar scripts and
tools.

We believe that many scripts and tools default to email and mailing lists in an effort to
simplify, as a result of the little flexibility to integrate more devices as targets of delivery,
∗e-mail: carina.antunes@cern.ch



Figure 1. Motivation: Notifications systems flow overview where all subscriptions are managed by
services.

and lack of any alternative which complies with individual user preferences. At CERN, on
one end of the spectrum we have communication teams writing individual emails to users
on a daily basis, which may be small targets, or in the order of thousands. On the other
end, there are many automated tools and scripts which generate thousands of notifications
daily, mostly in the form of emails. As an example, the study in [1] confirms the trend
we’ve been observing regarding high email usage, which reports office workers received in
average around 300 emails daily in 2023 with a 4% yearly increase foreseen for the next
years. We believe if we consider service managers and administrators which receive the
output of monitoring tools, this number could potentially be on the larger end of the sample.

A significant side effect of the high volume of automated emails is that the higher the
volume of information the more challenging it can become for those consuming it, to man-
age, filter and retain it. Besides the expected challenges to filter what’s relevant information
and to identify what should be prioritized, there’s also risks to the employee well being over-
time. As proposed in paper [2] (which builds on information overload, stress and burnout)
communications in general, and e-mail communications in particular, should be conceived
either as job demands or as job resources, both of which are related to burnout. To mitigate
these challenges, as an individual user, one can set up custom mailbox filter rules in order to
attempt improving the usability of the mailbox[3]. However this is a limited solution with
rules often based on text, such as keywords, subject or sender (which commonly is just a
no-reply email). As the rules list grows it becomes increasingly challenging to maintain, and
may result in important information being missed due to a faulty setup. Additionally the in-
consistent visuals from the multiple individual sources of notifications may generate a lack
of trust in the end users consuming them.

For organizations which follow the model described above there is also an associated cost
in maintenance, caused by the replication of tools and scripts sending notifications.

We focus on what we’ve identified as the major pitfalls of the current status quo of notifi-
cations systems, and present an alternative. The notification system presented in this solution
proposes a shift in the paradigm of handling notifications, moving from a setup where the
subscriptions are managed by the services, to a solution which empowers users to make those
choices. It allows saving efforts and costs by avoiding multiple parallel implementations of
communication systems and their maintenance and details such as retry and failure mecha-



nism, version updates, etc. The system was designed to allow those who send information
to focus on the content and relevance of the communication without the requirement to learn
about technical details of the many frameworks available to distribute information.

2 Towards a user centered notification system

One of the main goals while designing a solution which empowers users, is to shift the choices
of when, how and where to receive communications from the producers to the consumers of
information.

Additionally, the system is designed to enhance and complement the existing communi-
cation methods, in order to be integrated as a new layer between existing message systems -
a hub for the notifications. It aims to provide a simple and common entry-point both for the
consumers and producers. Furthermore it aspires to improve overall efficiency in notification
handling by absorbing a lot of the effort in maintenance of the many tools and scripts produc-
ing notifications in parallel. It avoids multiple implementations of notification handling, and
enables efficient integration development. Lastly, it is designed to be scalable and modular,
in order to facilitate maintenance in the long term and to allow adapting to changes in needs,
e.g. by providing flexibility to add and remove devices at any time. Ultimately the system
is designed as a cohesive communication hub, as summarized in Figure 2. The system al-
lows subscriptions to be managed by end users through a central platform, where it is easy to
opt-out and organize preferences.

Figure 2. Overview of the notification system, as a new layer between existing message systems, a hub
where subscriptions are managed by users.

2.1 Requirements and design

A key functionality designed into the system is to empower services and managers for easy
and standard access to users, with no technical knowledge required, but still providing flexi-
bility for programmatic access support for expert users. This is achieved by means of provid-
ing both a web interface for non-technical users, and an Application Programming Interface
(API) for advanced users.

Many requirements have been bound into the design of the system. In order to reduce
mailbox stress, the system allows configuration of alternative target devices (SMS, browser



push notifications, etc.), muting irrelevant notifications entirely, or aggregating notifications
under a digest format. By implementing a shared and recognizable notification layout, mes-
sage trust is improved - making use of this central hub, distribution is done in a standardized
and recognizable message layout, which in turn addresses the issue of heterogeneity among
communications, that undermines trust and aid users recognize possible malicious outliers
(phishing). Furthermore, the system improves confidence and reduces human errors, since
email filter configurations are not based on text, but instead rules are directly set in the system,
where users can target the producers of notifications directly (by the concept of channels). It
provides concepts of critical/emergency notifications and mandatory communication chan-
nels, features that improve trust in senders, as a consequence of being built-in features and
verifiable within the system. Notifications are non-deletable and non-editable, to achieve trust
and accountability in senders.

The hub is consolidated under the form of a web page, a central place to manage the
system, both for senders and receivers of notifications. Users can create channels, and manage
their subscriptions. They can consult past notifications, and set up preferences.

Preferences are a key concept of the model - they empower users by allowing them to
select how, where and when they want to receive their notifications. Users can set up pref-
erences globally as default rules, as well as specific preferences by channel. As an example,
a user can configure a default preference specifying all notifications should be received as
daily summary, at the end of the day, via email, by creating a global preference stating this.
Additionally, for a channel called "LHCb Monitoring", which the user deems important, they
can configure that all notifications are to be received instantly on all available devices. This is
possible with Channel-specific preferences, in this example a preference which only applies
for channel "LHCb Monitoring". This level of flexibility lessens information loss - in allow-
ing non time-sensitive communications, which frequently are overlooked and discarded, to
be consulted or aggregated into summaries at a later date.

Users can also mute channels deemed irrelevant. We refer to the action of muting a
channel as a "mute". Even further, they can configure global temporary mutes. E.g, when
going on holidays, a global mute can be created for the duration of the absence, clearing the
communication devices for urgent, relevant and user-to-user communication, which would
otherwise be busy with notifications one is not planning to act upon.

The system supports both concepts of individual users and groups, for channel members
and for targets of notifications. Subscriptions are mapped as channel-user associations, but as
well as channel-group. Individual users can be added to the channel members by the owners
and administrators of a channel, and as well as self-subscription, if the channel configuration
allows it. For the groups, the system is designed to connect with the CERN Identity Ser-
vices[4], which allows reusing the already existing concept of groups. The system will fetch
the group memberships and send the notification to all the users mapped to that group.

2.1.1 Model and concepts

A brief overview and definition of the most relevant model entities.

Users represent a single identity. Users may be both creators and consumers of notifications.
Users may be owners and have administrator privileges of channels.

Groups represent a group of users. Groups are used to set up permissions. Their member-
ships are extracted and managed in a 3rd party service, the Identity Services.

Channels are a unit to organize and group notifications, and their properties such as visibility
and privacy.



Memberships associate users and groups to channels, in order to receive notifications. Other
associations between channels are un-subscriptions (to stop receiving notification) and
mutes (both permanent and temporary).

Preferences store configurations of when, where and how to receive notification. Preferences
hold information regarding to which notifications they apply - which priority (Low, Normal,
Important) and during what hours they apply - and what is the outcome of the preference -
what frequency (Live, Daily, Weekly, Monthly) and to which device they’ll be delivered.

Devices model the target of the notification, such as email, browser push notification, SMS,
instant chat message.

Notifications model the actual notification content. They must be associated with a single
channel, and multiple users and groups optionally. The system currently supports both text
and HTML for content types. Notifications are non-deletable and non-editable.

2.2 Interface

The Web interface serves as a central place for simple and standard access to all users, both
with technical and non-technical expertise. For consumers of notifications the interface al-
lows users to list and configure their memberships: subscribe, unsubscribe and mute chan-
nels. Additionally it allows them to see past notifications of specific channels, and configure
their preferences and devices. For producers, users can create channels and configure them,
with Web pages to manage channel members and visibility. Channel administrators can send
notifications via the Web interface with a full featured WYSIWYG HTML editor.

Figure 3. The Web Interface’s landing page, showcasing the list of channels a user has access. The
central element of the page is a list of channels. For each channel several shortcut actions are avail-
able: muting, (un)subscribing, managing the channel and sending notifications. Users may favorite
their channels in this page as well.
At the top bar, options for channels can be seen, as well as option for preferences, mutes and devices.
A Help page is accessible as well.
At the left column, many options for filtering channels are available: all channels, channels with ad-
ministrative privileges, subscribed channels and favorites. Additionally filters for categories and tags
for discoverability and exploration. An option for expanded or reduced view, for advanced users con-
venience. And lastly options to mute all channels and create new channels are available.



2.3 Architecture

A summarized view of the architecture can be seen in Figure 4. The user facing compo-
nents include the already mentioned - a Web Interface and the REST API - as well as an
Email gateway for convenient integration with legacy systems using emails, and a Swagger
UI integration under the form of a Web page. The Swagger integration is exposed in a QA
environment for users to be able to get familiar with the API and explore it, without the risk
of accidental spam.

The heavy lifting of sending notifications is asynchronous and backed by message queues.
A modular architecture has been adopted, which allows to reduce the complexity by splitting
the code by functionality. For the asynchronous part two main concepts exist: routing and
the consumers. The first processes a notification, expanding a notification members and their
preferences, and routing it into the consumers. The consumers are the part of the system
responsible to actually deliver the notification into the end devices. There is a consumer per
device type, i.e., one consumer responsible for pushing via email, another for delivering via
SMS and so on.

Other mainstream components have been adopted such as a component to handle infras-
tructure as code, others for monitoring, auditing and archiving. The infrastructure as code
component exists under the form of a Git repository, which allows deploying with the stateof-
the-art continuous integration tools[5]. It allows versioning, recovery, automated releases and
rollback flows.

Figure 4. Notification system model: main components overview

All stack has been chosen to comply with Open Source by design, in order to avoid
vendor lock-in. It is just as well, heavily influenced by the current landscape of stack offered
at CERN via central services, following guidelines to reuse as much as possible in order to
optimize resources, and promote maintenance in the long run. This results in a vast stack
of widely adopted technologies, frameworks and languages such as ActiveMQ[6] for the
message queues, PostgreSQL for databases and OKD[7] for hosting.

2.4 Member Expansion and Preference Routing

A single notification object in the system is mapped to many end targets. The system, specifi-
cally the Routing component (see Figure 5), holds the logic to fetch all associated users, their
preferences and their devices. This component multiplies a notification object associated with



a channel (and optionally directly with a set of target users and groups) into many individual
notification messages associated with a single end user/device.

Processing starts by expanding all of the users associated with a notification: for each
notification, it fetches the list of users and groups members for the associated channel (or the
targets directly). For each group (in the channel members list) it will reach the Identity Ser-
vices and fetch its list of users members. Processing continues by merging all the individual
users, removing duplicates, mutes and unsubscribes. Finally for each individual user, their
list of preferences which applies is fetched (time, format and device a user prefers to receive
said notification). The final individual notifications are passed onto the consumers via the
message queues.

Figure 5. Notification flow overview through the system components from creation to delivery

2.5 Delivery Strategy, Retries and Failure Handling

Within the system, the notification journey can start in the web interface, in the email gateway
or the REST API (and Swagger[8]). It is then stored in the Database and put into the Routing
queue - at that moment, for the producer the process is concluded and they’ll receive a success
response.

Asynchronously, the processing of the notification starts at that moment. The Routing
component reads the message holding the notification information from the routing queue,
expands it into multiple notifications by end target (both user and device information) and
generates as many messages into the corresponding consumer queues. A queue and consumer
exist by device type, which allows to scale all components individually and horizontally.
Finally the consumer components deliver the notification to each device, exactly once.

All queues have configuration for retries following an exponential backoff strategy, which
allows a growing time window for recovery and solution of any issues in the system or code-
base. A persistent failure lasting days is not expected, since the system includes monitoring
and alerting. Nonetheless Deadletter queue[9] have been configured as a last resort safety
policy. Those will generate alerts for administrators of the system to manually act upon.

Configuration for retries in queues and consumers guarantees at-least-once delivery[10],
but could lead to duplicated deliveries. To achieve exactly-once delivery, and for queue con-
sumers to be idempotent, a strongly consistent[11] key-value store has been added. This
component stores the state of delivery to a device of a notification (Notification ID/Device
ID).



A retry after deliver to device is not expected in the Consumers. Regardless, checking this
state is sufficient to avoid duplicated delivery. However in the Routing component, this store
is fundamental to avoid large numbers of duplicates in case of failure. Due to its implementa-
tion, failures can occur in the middle of processing, where part of the individual notifications
could have already been generated and passed to the consumer message queues. As an ex-
ample, network instability can occur in the middle of processing, causing the message to be
returned to the queue for later retry, at a stage where part of the individual messages have
been sent to the consumer queues. On retry, processing starts again from the beginning. To
ensure idempotency, and avoid duplicates being sent, the introduction of this store allows
skipping all notifications already delivered.
For this store, etcd[12] which is distributed, has been used, as it is fast and simple, and the
data needs only a short life span.

3 Evolution

The system described is a new solution that aims to become a powerful hub which empowers
users. At time of publication it is being evaluated for its potential to help user communities.
Simultaneously it is available at CERN (https://cern.ch/notifications) and has been steadily
growing adoption and performing well. Nonetheless there is still much room for improve-
ments. Additional features have been requested that could provide growing usability and
integration of wider use-cases, such as support for recurrent notifications, creation and us-
age of templates for notifications, statistics for notifications and channels, a built-in media
store, customization of channels and notifications look-and-feel for limited and relevant of-
ficial channels and a Indico integration (Indico is a open-source event management system,
popular in the HEP community).

CERN Notifications is an Open Source solution. In order for it to be flexible enough to
be integrated within other organizations, refactoring to a Plug-in architecture[13] is required,
providing extension points, interfaces and configurable modules. Devices could be added and
passed as extensible plugins, allowing alternative implementations and facilitating packaging
for easy deployment.

Finally, consolidation of the deployment methods, performance tuning and optimization
of notifications deliveries per device type are being performed. A specific focus is set on
setting limits, monitoring probes, improving horizontal auto-scaling, tracing and testing. Ser-
vice Level Agreements have yet to be defined, as well as to identify the limits the system can
handle. Work to optimize all the codebase is ongoing, focusing on concepts such as pagina-
tion, caching, memoization, multi-threading, configuration and memory/cpu optimization.

4 Source Code

The Notifications system is Open Source and its source code is available at
https://github.com/hermodnotifications/.

References

[1] The Radicati Group, Inc. Email Statistics Report 2023-2027. 2023. url: https://www.
radicati.com/wp/wp-content/uploads/2023/04/Email-Statistics-Report-2023-2027-
Executive-Summary.pdf.

[2] Claudia P. Estévez-Mujica and Eric Quintane. “E-mail communication patterns and
job burnout”. In: (2018). doi: https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0193966.



[3] Email Filtering. 2023. url: https://en.wikipedia.org/wiki/Email_filtering.
[4] A. Ahmad et al. “The new (and improved!) cern single-sign-on”. In: (2021). doi: https:

//doi.org/10.1051/epjconf/202125102015.
[5] How to create a CI/CD pipeline with Auto Deploy to Kubernetes using GitLab and

Helm. 2023. url: https://about.gitlab.com/blog/2017/09/21/how-to-create-a-ci-cd-
pipeline-with-auto-deploy-to-kubernetes-using-gitlab.

[6] ActiveMQ. 2023. url: https://activemq.apache.org.
[7] OKD. 2023. url: https://www.okd.io.
[8] Swagger. 2023. url: https://swagger.io.
[9] Message redelivery and dlq handling. 2023. url: https : / / activemq . apache . org /

message-redelivery-and-dlq-handling.
[10] C. Fehling et al. Cloud Computing Patterns. Springer Vienna, 2014.
[11] S. Newman. Building Microservices. O’Reilly Media, 2015.
[12] etcd. 2023. url: https://etcd.io.
[13] F. Schweiggert J. Mayer I. Melzer. “Lightweight Plug-In-Based Application Develop-

ment”. In: (2002). doi: https://doi.org/10.1007/3-540-36557-5_9.


