
Standardizing DIRAC’s Cloud Interfaces

Daniela Bauer1,∗ and Simon Fayer1

1Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United
Kingdom

Abstract.
DIRAC is a widely used framework for distributed computing. It provides a
layer between users and computing resources by offering a common interface
to a number of heterogeneous resource providers. In these proceedings we de-
scribe a new implementation of the DIRAC to Cloud interface.

1 Introduction

DIRAC was originally developed as a workload management system for the LHCb experi-
ment. In 2014 the DIRAC consortium was founded to oversee the release of DIRAC as an
experiment agnostic tool. It has since been adopted by a number of communities, either as a
single-VO instance (e.g. Belle II, CTA, ILC and others) or in a multi-VO configuration (e.g.
GridPP and EGI). In the UK the GridPP DIRAC instance provides access to resources for
around 10 communities, mostly in the neutrino, dark matter and astronomy disciplines. The
IRIS project in the UK is a government initiative aimed at providing computing resources to a
range of scientific projects outside of the traditional WLCG context. A large amount of these
resources are cloud based, meaning reliable cloud support became a priority for the GridPP
DIRAC instance.

2 The DIRAC Cloud Interface

DIRAC [1] originally provided support for dynamic workload management on a cloud via its
VMDIRAC extension [2]. When the VMDIRAC extension was envisaged, it was common
to use commercial clouds via reservations and the design of the project reflected this. The
VMDIRAC code itself was developed as a self-contained plugin, duplicating a significant
amount of code from the core DIRAC project which then needed maintaining separately.

With experience, the modern usage of clouds within the DIRAC communities is primarily
targeted at research rather than commercial clouds; this allows us to approach the cloud
resources in a similar manner to a grid resource.

3 Implementation

The aim of the new implementation was to minimize the cloud specific code within the
DIRAC framework and to use standard cloud interface libraries (e.g. Apache libcloud [3]) to
avoid the pitfalls of homebrew code.
∗e-mail: lcg-site-admin@imperial.ac.uk



Figure 1: A schematic of the DIRAC framework. Not all possible extensions are shown.

For grid-like resources, the workload management component of DIRAC uses a pilot
based submission system [4]. A schematic of the DIRAC framework is shown in Figure 1. A
service determines how many pilots should be submitted and uses a resource specific plugin
known as a ComputingElement (CE) to manage its pilots; these plugins implement either a
local or remote interface depending on what is appropriate for their target resource. Remote
implementations exist for HTCondorCE, ARC and SSH (primarily used for direct access
to HPC resources). Local implementations run inside the pilot and perform tasks such as
containerization (SingularityCE) and multi-core slot partitioning (PoolCE). In the new cloud
interface design, a new cloud specific CE plugin can be created, significantly reducing the
amount of code duplication. An overview of changes to the module structure is shown in
Figure 2.

Apache libcloud is an open source collection of python based cloud interfaces, among
them OpenStack and a number of commercial cloud solutions, maintained by the Apache
foundation. The majority of our target cloud sites are OpenStack based. In general we prefer
to use an application specific token credential for authenticating against the cloud services;
in OpenStack these are known as application credentials. Apache libcloud initially had no
support for application credentials but we were able to submit a patch to enable this func-
tionality, which has been accepted into the upstream libcloud release. Adding this code to
libcloud instead of DIRAC has the advantage of a much wider user base benefiting from
it. In turn, DIRAC benefits from updates to libcloud without having to maintain their own
cloud-specific modules.

Conceptually each virtual machine (VM) is treated as a single pilot job, which is pro-
cessed by DIRAC in the same manner as pilot jobs sent to grid resources. This allows the
creation of a CloudCE plugin which inherits from the ComputeElement like any other CE
module in DIRAC. Instead of communication with a grid compute element, the code calls the
respective libcloud interface with the correct parameters/credentials. It’s only through this



interface that DIRAC interacts with the clouds it submits to. The pilot payload script and
data are added as instance metadata in cloud-init [5] format; this allows any image containing
cloud-init to decode and start the DIRAC pilot bootstrap scripts. The previous VMDIRAC
implementation used a custom wrapper to set-up the pilot. The new CloudCE is able to use
the standard pilot wrapper directly, greatly reducing the maintenance required.

3.1 Other cloud considerations

Clouds present an additional challenge in that for grid-like jobs, DIRAC uses the proxy re-
newal mechanism provided by the CEs for the pilot proxies. In clouds the necessary inbound
external connectivity cannot be guaranteed. Therefore DIRAC needs to create a sufficiently
long-lived pilot proxy when starting the VM. User proxies are renewed by the DIRAC pilot
agent as usual and do not need special consideration for a cloud service.

The lack of inbound external connectivity also has implication for the retrieval of pilot
logs, which is sometimes necessary for debugging. This is being addressed by changing the
pilot logging to a push model [7].

Initially we envisaged that clouds would use the private project networks, but as usage on
our local OpenStack cloud ramped up, the NAT became overloaded and started dropping con-
nections. This can be ameliorated by using the provider network directly, assigning a bridged
public IP address to each instance directly. To minimize our IPv4 footprint we switched to
using the PoolCE to allocate single core jobs within a larger multi-core flavor.

�����

�����	
����

���	���������	

���������
��

������

����������

�����
 �����
��!
�
"�#��	

�
��
�
�
��
�
�
�
�
��
�
�$


�
�

������

����������

(a) Old VMDIRAC structure (b) New CloudCE structure

Figure 2: Conceptual overview of the old and new DIRAC cloud interface implementation.

4 Status and Plans

The code has been available in DIRAC since July 2022 (release v7r3p21) and was deployed
on the GridPP DIRAC at the same time. It has since been shown to work reliably for a large
number of jobs (see Figure 3). We hope that through this standardization future work to in-
clude other cloud platforms and/or sites would only require at-most minor tweaks. However,
once tokens become the default authentication method in our user communities, we anticipate
shifting our focus to implementing token support.



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

01/06/22

01/07/22

01/08/22

01/09/22

01/10/22

01/11/22

01/12/22

01/01/23

R
u

n
n

in
g

 J
o

b
s

Date

Euclid
GridPP

LZ

Figure 3: GridPP DIRAC Cloud usage since the deployment of the CloudCE interface.

References

[1] DIRAC consortium, DIRAC https://dirac.readthedocs.io/en/latest/, [accessed 2023-05-
26]

[2] Víctor Fernandez Albor et al., Cloud flexibility using DIRAC interware (2014), J. Phys.:
Conf. Ser. 513 03203

[3] Apache Libcloud https://libcloud.apache.org/, [accessed 2023-05-26]
[4] F. Stagni et al., DIRAC universal pilots (2017), J. Phys.: Conf. Ser. 898 092024
[5] cloud-init - The standard for customising cloud instances https://cloud-init.io/, [accessed

2023-11-27]
[6] GridPP - Distributed Computing for Data-Intensive Research https://www.gridpp.ac.uk/,

[accessed 2023-05-26]
[7] J. Martyniak, S.Fayer, F. Stagni, https://indico.jlab.org/event/459/contributions/11519/,

[accessed 2023-06-09]

https://dirac.readthedocs.io/en/latest/
https://libcloud.apache.org/
https://cloud-init.io/
https://www.gridpp.ac.uk/
https://indico.jlab.org/event/459/contributions/11519/

	Introduction
	The DIRAC Cloud Interface
	Implementation
	Other cloud considerations

	Status and Plans

