
Dynamic scheduling using CPU oversubscription in the
ALICE Grid

Marta Bertran Ferrer1,∗, Costin Grigoras1,∗∗, and Rosa M. Badia2,∗∗∗

1CERN, Esplanade des Particules 1, 1211 Geneva 23, Switzerland
2Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain

Abstract. The ALICE Grid is designed to perform a realtime comprehensive
monitoring of both jobs and execution nodes in order to maintain a continuous
and consistent status of the Grid infrastructure. An extensive database of histor-
ical data is available and is periodically analyzed to tune the workflows and data
management to optimal performance levels. This data, when evaluated in real
time, has the power to trigger decisions for efficient resource management of
the currently running payloads, for example to enable the execution of a higher
volume of work per unit of time. In this article, we consider scenarios in which,
through constant interaction with the monitoring agents, a dynamic adaptation
of the running workflows is performed. The target resources are memory and
CPU with the objective of using them in their entirety and ensuring optimal
utilization fairness between executing jobs.
Grid resources are heterogeneous and of different generations, which means that
some of them have better hardware characteristics than the minimum required
to execute ALICE jobs. Our middleware, JAliEn, works on the basis of hav-
ing at least 2 GB of RAM allocated per core (allowing up to 8 GB of virtual
memory when including swap). Many of the worker nodes have higher mem-
ory per core ratios than these basic limits and in terms of available memory they
therefore have free resources to accommodate extra jobs. The running jobs may
have different behaviors and unequal resource usages depending on their nature.
For example, analysis tasks are I/O bound while Monte-Carlo tasks are CPU in-
tensive. Running additional jobs with complementary resource usage patterns
on a worker node has a great potential to increase its total efficiency. This pa-
per presents the methodology to exploit the different resource usage profiles by
oversubscribing the worker nodes with extra jobs taking into account their CPU
resource usage levels and memory capacity.

1 Introduction

The Grid’s fleet of worker nodes is widely heterogeneous. So are its batch scheduling and
memory allocation policies on the running workflows. Since its inception, the ALICE Grid
has always had as a constraining factor the allocation of 2 GB of memory per CPU core,
going up to 8 GB when including swap. For jobs with larger memory requirements, there

∗e-mail: marta.bertran.ferrer@cern.ch
∗∗e-mail: costin.grigoras@cern.ch
∗∗∗e-mail: rosa.m.badia@bsc.es



is no guarantee that sites have enough resources to be allocated, and they may eventually be
killed by the batch system when the set limits are exceeded. The evolution of computing
systems has brought with it an increase in memory capacity. In advanced generations, the
minimum memory requirements are far exceeded, resulting in significantly more memory
per CPU core.

One of the main objectives of the ALICE Grid is the optimization of the work done per
unit of time. That is, the maximisation of the job turnaround, executing the highest amount
of workload per unit of time on all the computational resources we have at our disposal.
Many site batch queues allocate to ALICE jobs computing slots of a certain limited amount
of resources. Grid site computing nodes run parallel workflows of different origins, differ-
ent natures and different resource usage patterns. The nodes must distribute their computing
power and memory capacity among the applications in execution, allocating portions to the
execution of our jobs. Because of this limited allocation, when there is more memory avail-
able than the initial assumptions, idle resources are left unused. This causes a great detriment
to the usage efficiency of computer systems, thus revealing the limitations of their resource
allocation methodology among the running workflows.

To avoid this waste of resources, we propose the scenario in which whole nodes are
allocated to the execution of our workflows. For a correct management of the resources of
whole nodes, it is necessary that the running software makes use of resource partitioning and
allocation techniques between the executed processes. This resource allocation methodology
is commonly used in supercomputers. As the ALICE Grid already uses some HPC centres
for job execution, it has incorporated in its middleware framework, JAliEn, a mechanism
that is capable of auto-detecting the resources of the nodes and distributing them among the
running jobs in whole node allocation scenarios. The allocation of a whole node brings with
it multiple advantages for the scheduling of ALICE jobs, since by knowing the behaviour
and execution patterns of the active workflows, a more efficient resource utilisation can be
promoted. ALICE payloads behave differently depending on their nature, with different CPU,
I/O and memory usage patterns. I/O constrained jobs tend not to use the full computing
power of the allocated CPU cores. For this reason, the execution of additional tasks with
complementary resource usage patterns has great potential to trade off these inefficiencies.

This paper presents a study of the CPU and memory resource utilisation levels of the Grid
worker nodes, which reveals that they could accommodate additional job execution slots if
more customised scheduling policies were adopted. It is also presented how the Grid middle-
ware framework has been extended with the functionality of job oversubscription through the
constant monitoring of the CPU and memory resources used in whole node scheduling sce-
narios. It is structured as follows: Section 2 gives an overview of oversubscription strategies
used in different computing environments. In Section 3, the current Grid landscape is pre-
sented, with a survey of worker node resource utilisation levels for assessing the feasibility
of oversubscription policies. Section 4 details the implementation of the workflow. Finally,
Section 5 presents a study of its deployment in a production environment.

2 State of the Art

A common practice employed to reduce unused computational resources is oversubscrip-
tion. Unused resources are to be found given the frequent disparity between the amount
of resources that workloads request and how much they actually use during execution [1].
Oversubscribing a resource is understood as offering more than its nominal capacity under
the assumption that the share allocated to other workflows will not be fully utilised [2]. This
mechanism makes it possible to launch speculative or opportunistic tasks, thereby improving



the levels of utilisation with the ultimate goal of reducing resource idleness while ensuring
performance guarantees.

Oversubscribing an environment comes with risks, such as CPU overload or memory limit
overruns, that can degrade the performance of running applications and even lead to outages
and crashes. Consequently, this can complicate guaranteeing strict service-level agreements
(SLAs) [3]. To counteract the effects of CPU overload, running workloads can borrow re-
sources allocated to others running concurrently, be cancelled or preempted, or be migrated
to other physical machines with enough available resources [4] [5]. Potential problems are
resource mismatches, due to speculative job submission and fluctuations in system utilisation
levels, and Quality of Service (QoS) degradation due to increased execution latency [1].

In cloud environments it is a common practice to establish consolidation strategies to min-
imise the number of servers used and reduce resource fragmentation [6]. For this purpose, it is
recommended that physical machines simultaneously host several Virtual Machines (VMs).
Their strategic placement is a key factor in minimising resource allocation. To meet perfor-
mance guarantees, the standard practice is to provision VMs with redundant resources, which
results in low levels of resource utilisation. To prevent that, oversubscription strategies can be
used to reduce the resource entitlements of each VM according to its QoS requirements [1].
In addition, the implementation of oversubscription practices can lower power consumption
and hardware costs [2].

In the literature we can find studies of oversubscription of resources of different nature
such as memory [7], whose overloading is particularly devastating to application perfor-
mance, bandwidth [8] [9], guaranteeing efficient network utilization, and CPU processors
[5]. A differentiating factor in oversubscription policies is that they need not result in re-
source competition, but in resource sharing guaranteeing performance isolation [6].

3 Oversubscription workflow

3.1 Current situation on the Grid

The ALICE Grid constituent sites and systems are largely diverse. The performance char-
acteristics of the individual constituent systems differ due to their architectures and the gen-
erations of their components. In addition, access to storage is also a limiting factor when
executing tasks requiring input data. This causes job execution performance levels to differ
between sites, and also between the constituent worker nodes.

A wide variety of jobs of different nature are executed on the Grid. One of the main
differences between jobs of different types is their pattern of resource usage. In this way, the
efficiency of a machine’s resource usage will also be determined by the nature of the jobs
being executed. An example would be I/O bound jobs such as analysis jobs, which perform
processing of data obtained from physical events. The processing of data requires network
access and therefore the efficiency of the jobs is constrained by the speed at which the data is
accessed, which makes strategic placement a key factor in minimising resource allocation.

3.1.1 Grid site resource utilization analysis

A survey of the Grid worker nodes has been undertaken to study their CPU and memory
utilisation levels. This study aims to analyse the feasibility of adopting oversubscription
policies for hosts using whole node submission (see Section 4.1). Over a 72-hour period,
all worker nodes reporting values to the ALICE monitoring system MonALISA have been
surveyed. These nodes could potentially be running other third-party workloads that we are



not aware of, but given that ALICE workloads are also heterogeneous, the analyzed scenarios
are considered as a representative sample for this case study.

One of the main observations has been that the vast majority (more than 76%) have spare
memory resources not used by the running jobs, which are expected to use up to 2 GB of
RAM/core (allowed up to 8 GB/core when including swap). That is, their memory per core
ratio is higher than the amount required. This constraint is checked by the respective batch
queue at each site, at values adapted to the physical resources on each node. In a whole
node scheduling situation then, as the jobs are limited to these levels of memory usage, idle
resources will be left unused by any of the running workflows.

Another analysis performed consisted of a scan of the levels of memory and CPU usage
in the Grid worker nodes, continuously sampling the amount of idle resources to evaluate the
potential additional slots. This is done through the accounting of resources that remain idle
during a certain time window and could be used for the execution of additional workflows
without being preempted. The variation of this time window will have a direct impact on
the available resources reported. If the period is shorter, more idle resources will potentially
remain available. However, as we increase the study window, they will be more prone to
be used by other workflows due to workload fluctuations. As far as idle CPU cores are
concerned, we see that the number of nodes that maintain a certain amount of cores available
decreases as the amount of cores is increased. That means that many more nodes having one
or two free cores are observed compared to the number of nodes which have for instance ten
free cores. The same holds for available memory. As the new experiment software for LHC
Run 3 [10] deploys multi-core jobs, although legacy single-core jobs are still executed, this
study has been performed considering extra slots equipped with 8 CPU cores. Given that
each core is assigned 2GB of RAM, a total allocation of 16 GB per slot is assumed.

3.1.2 Potential for additional execution resources

We have done a study that illustrates the potential extra slots we could have on the Grid
as a whole, taking into account the time that resources are kept idle on worker nodes. For
this purpose, the thresholds for starting and killing payloads were established. In this study
the job slots are considered to be assigned eight cores and an idle nine-core boundary was
established to account for a new slot: eight cores for the execution itself and one left idle for
system operations. A temporary grace interval has been set to decide when to start a new job,
thus waiting for the amount of idle cores to stabilise, and to decide when to kill a payload in
case the running machine becomes saturated. In order to determine these values, the optimal
settings were analysed to find a balance between the preemption rate and the added pressure
on the ALICE job management database. The resulting optimal configuration was achieved
for an hour-long interval during which cores need to remain idle before starting a new job, and
fifteen-minutes-long interval during which the machine exhibits constant saturation before it
gets preempted. Since we set an interval of one hour as a temporal decision threshold, this
time will always be lost, the idle cores not being used by any payload.

From the collected data, the resulting usable eight-core CPU hours, defined as those idle-
time intervals lasting 8 hours or more, have been studied. Fig. 1 shows the number of nodes
with 9+ idle cores when ascending usable time intervals. It is worth noting that a large part
of the nodes keep the resources idle for the whole measure period, as seen in the highest
peak. We find an additional amount of 251k usable eight-core CPU hours that turned out to
contain 27.5k extra eight-hour full slots. If we consider the case where all the hosts included
in our study had been used in whole node regime for the execution of ALICE workflows, they
would have provided in 72 hours a total of 2.5M eight-core CPU hours. From these figures it
can be concluded that the amount of additional usable CPU hours represents a 10.2% of the



total, all of which are currently not used, but could be through the adoption of the presented
oversubscription mechanism.

On the other hand, node oversubscription also brings with it a caveat: the potential pre-
emption of eight-core jobs due to machine saturation. As seen in Fig. 2, in the measured
72-hour interval, a total of 18.8k eight-core jobs would have been killed due to node CPU us-
age exceeding the threshold for more than 15 minutes. Jobs running in this regime would run
opportunistically, which unavoidably would result in added pressure on the ALICE job man-
agement database given the higher preemption rate. Nonetheless, it is considered manageable
for the workflow of the experiment.

Figure 1. Distribution of the length of poten-
tial extra free slots on worker nodes from all
Grid sites.

Figure 2. Execution time length distribution
of potentially preempted slots within worker
nodes from all Grid sites.

4 Implementing oversubscription on the ALICE Grid
4.1 Whole node allocation and partitioning

The executing sites can allocate resources to the ALICE Grid jobs in different granularities.
However, this study considers the allocation of a subset of the resources of the executing
machines, and the allocation of whole nodes, i.e. all the resources that make up a worker
node. The allocation of a whole node brings with it a great potential for JAliEn, the ALICE
Grid middleware framework, to perform a tailored allocation of the jobs to be executed. Given
the prior knowledge of the run patterns of the different types of jobs running on the Grid, the
selection of the jobs executed in parallel can be optimised to maximise the utilisation levels
of the machines.

The methodology followed for job allocation is based on late binding. The worker nodes
send match requests to the ALICE Central Services in which they announce their capabilities,
such as available memory, remaining non-allocated cores, their residual lifetime or other
limitations imposed on the site. In the Central Services the allocation of the jobs is performed,
whose descriptions are sent in response to the received requests. Once the execution of the
jobs is finished, the resources they were occupying are freed and returned to the central pool
for future allocations. The management of all the resources of a node allows its custom
partitioning among the jobs in execution, without setting restrictions or rigid allocations.
Having this ability to distribute resources according to the time of need makes it possible to
tune how many jobs are executed in parallel.

4.1.1 Resource usage monitoring

Each of the sites that make up the ALICE Grid has a monitoring agent that maintains a com-
munication channel with the Central Services through which it periodically sends monitoring



information on the executing payloads and the resources used. This information can be the
key to make scheduling decisions that enhance the usage patterns of the computing resources
in order to achieve high levels of efficiency. In terms of monitoring the worker nodes, this
includes CPU, memory, disk, and network usage rates. From this information, JAliEn is able
to sketch a detailed description of the machine.

4.2 The oversubscription workflow

In whole node scheduling scenarios we want to use the available resources in the most ef-
ficient way. Having a prior knowledge of the usage patterns of the jobs that are regularly
executed on the Grid allows us to make predictions of their behaviour. More precisely, it is
known that the analysis tasks are I/O intensive and that they do not use their allocated CPU
slots at all times. Given this situation, idle portions of CPU can be gathered and used to exe-
cute computing-intensive jobs. Among the main payload types executed on the Grid, Monte-
Carlo simulations are best suited to the desired job profile. As executing CPU-intensive tasks
does not add pressure on I/O, no competition will be added for the latter resources.

The node oversubscription is a configurable flag in the ALICE central (LDAP) config-
uration of the target site. The amount of cores to consider for the oversubscription pool is
determined based on the assessment of their resource ratios. When scheduling the Job Agents
that manage the execution of the payloads, the memory per CPU core ratio is computed and it
is decided whether cores can be oversubscribed. For this to be possible, it must be guaranteed
that this ratio is higher than 2 GB of RAM per core and 8 GB when also considering swap.
The amount of CPU cores available for oversubscription is calculated as follows:

max(0,min(RAM/2, (RAM + swap)/8) − physicalCores) (1)

The CPU utilisation levels of the worker nodes concerned are continuously monitored.
The monitoring agent keeps track of the idle CPU and uses it to make scheduling decisions.
When it detects that the idle CPU levels are above a certain threshold and a minimum of 2
GB of free memory is available, the opportunity to run a job in oversubscription mode is
triggered. A grace period is established to ensure that these values are not ephemeral and,
if conditions permit, a request is sent to Central Services advertising the resources in the
oversubscription pool. In this request, the nature of the job to be received is also detailed, in
this case Monte-Carlo simulations, to promote the complementary resource patterns. The job
to be executed is set to a low priority to minimise interference with the jobs that are being
executed using the resources in the regular pool.

Since we need to have all the machine’s resources available to enable oversubscription
decisions, one of the necessary conditions is to have whole node allocations configured on
the sites. Several sites on the Grid are configured in this way, showing good results in terms
of resource utilisation efficiency.

4.3 Rescheduling policies for the oversubscribed jobs

Continuous monitoring of CPU and memory utilisation also serves to detect states where the
machine becomes saturated and jobs running in the regular resource pool are negatively af-
fected. When alarming utilisation levels are detected, oversubscribed jobs are preempted. The
preemption of oversubscribed jobs and their rescheduling differs from the regular reschedul-
ing of failed jobs, for which the resubmission counter is permitted to increase until it reaches
a certain threshold. In the case of an oversubscribed job that is interrupted due to lack of avail-
able resources, the job’s resubmission counter is not incremented, thus the job is rescheduled



without penalty. Another policy applied with regard to job preemption is the consideration
of its running time to decide the order in which such jobs are cancelled. Priority is given to
continue executing the workflows that have been running the longest and will therefore have
the highest probability to complete, while preempting those with a shorter lifetime.

5 Deployment of the oversubscription workflow in a production
environment

The presented implementation has been evaluated by deploying the oversubscription-enabled
framework on machines with different hardware characteristics. As described in Section 4,
the maximum number of jobs executed in oversubscribed mode is given by the underlying
system architecture. The results obtained on two different machines will be used to illustrate
the added power of oversubscription. In both cases, the amount of oversubscribed cores is
bounded by their swap capacity.

• Machine 1: Server with 64 cores Intel Xeon Gold 6226R at 2.90 GHz with 500 GB of
RAM and 8 GB of swap. Using Eq. 1, 3 cores were added to the oversubscription pool.

• Machine 2: Server with 32 cores Intel Xeon Gold 6244 at 3.60GHz with 756 GB of RAM
and 8 GB of swap. Oversubscription pool of 11 cores.

One-day-long slots have been run on both machines, comparing regular and
oversubscription-enabled job executions. Single-core analysis jobs with the same input data
have been executed on both machines and both scenarios, homogenising the testbed for a con-
sistent evaluation of results. As many tasks as CPU cores of the systems have been executed
in parallel. As oversubscribed jobs, single-core CPU-intensive MonteCarlo simulations have
been run. The metrics defined to evaluate the results are, on the one hand, the efficiency of
the analysis jobs (regular executions) and, on the other hand, the average efficiency of CPU
resource utilisation of the machine over the one-day-long slot. The machine’s CPU utilisation
is computed as the sum of individual jobs’ CPU times over the 24h interval.

The obtained results are as follows:

• Machine 1

- Regular job average execution efficiency in non-oversubscribed regime: 55.1%
- Regular job average execution efficiency in oversubscribed regime: 53.5%
- Machine utilization efficiency ratio (oversubscribed / non-oversubscribed): 1.03

• Machine 2

CPU usage of this machine in both scenarios is shown in Fig. 3 and 4.
- Regular job average execution efficiency in non-oversubscribed regime: 63.3%
- Regular job average execution efficiency in oversubscribed regime: 58.2%
- Machine utilization efficiency ratio (oversubscribed / non-oversubscribed): 1.28

From the conducted experiments and the metrics obtained, we can draw some conclu-
sions. First, the increase in efficiency observed in the machines is consistent with the amount
of extra jobs executed. Moreover, the drops in job efficiency are also coherent between the
two machines. As a main result of this study, we highlight the pronounced increase in ma-
chine utilisation levels due to oversubscription, with the largest improvement of 28%, ob-
served on the machine with the highest number of oversubscribed jobs.



Figure 3. CPU usage of Machine 2 running with
the regular framework.

Figure 4. CPU usage of Machine 2 running with
the oversubscription-enabled framework.

6 Conclusion
This paper presents a study of the utilisation levels of the machines that make up the AL-
ICE Grid, which reveals that part of their resources remain idle for considerably long periods
of time. Resource utilisation patterns of concurrent tasks of different natures allow utilisa-
tion efficiencies to be increased. With sufficient memory resources and only in cases where
whole-node scheduling is enabled, oversubscription of CPU cores in the worker nodes has
been found to lead to pronounced increases in utilisation efficiency. However, adding parallel
workloads increases the pressure on resources, resulting in decreased individual job execu-
tion efficiency. Nonetheless, in Grid environments, where resource heterogeneity limits the
enforcement of strict SLAs, the observed increase in machine utilisation compensates for the
decrease in individual job execution efficiency.

References
[1] R. Yang, C. Hu, X. Sun, P. Garraghan, T. Wo, Z. Wen, H. Peng, J. Xu, C. Li, IEEE

Transactions on Parallel and Distributed Systems 31 (2020)
[2] R. Householder, S. Arnold, R. Green, On cloud-based oversubscription (2014)
[3] R. Ghosh, V.K. Naik, Biting Off Safely More Than You Can Chew: Predictive Analytics

for Resource Over-Commit in IaaS Cloud, in IEEE 5th CLOUD (2012)
[4] N. Jain, I. Menache, J.S. Naor, B. Shepherd, Topology-aware vm migration in band-

width oversubscribed datacenter networks, in International Colloquium on Automata,
Languages, and Programming (Springer, 2012)

[5] X. Zhang, Z.Y. Shae, S. Zheng, H. Jamjoom, Virtual machine migration in an over-
committed cloud, in IEEE Network Operations and Management Symposium (2012)

[6] Y. Liu, A Consolidation Strategy Supporting Resources Oversubscription in Cloud
Computing, in IEEE 3rd CSCloud (2016)

[7] D. Williams, H. Jamjoom, Y.H. Liu, H. Weatherspoon, Overdriver: Handling memory
overload in an oversubscribed cloud (ACM New York, NY, USA, 2011), Vol. 46

[8] Z. Guo, J. Duan, Y. Yang, Oversubscription Bounded Multicast Scheduling in Fat-Tree
Data Center Networks, in IEEE 27th IPDPS (2013)

[9] D. Breitgand, A. Epstein, Improving consolidation of virtual machines with risk-aware
bandwidth oversubscription in compute clouds, in IEEE INFOCOM (2012)

[10] P. Buncic, M. Krzewicki, P. Vande Vyvre, Technical Design Report for the Upgrade
of the Online-Offline Computing System. CERN-LHCC-2015-006, ALICE-TDR-019
(2015)


