
Analysis Grand Challenge benchmarking tests on selected
sites

David Koch1,∗, Thomas Kuhr1, Günter Duckeck1, and Nikolai Hartmann1

1Ludwig-Maximilians-Universität München

Abstract. A fast turn-around time and ease of use are important factors for sys-
tems supporting the analysis of large HEP data samples. We study and compare
multiple technical approaches.
This article will be about setting up and benchmarking the Analysis Grand Chal-
lenge (AGC) [1] using CMS Open Data. The AGC is an effort to provide a real-
istic physics analysis with the intent of showcasing the functionality, scalability
and feature-completeness of the Scikit-HEP Python ecosystem.
We will present the results of setting up the necessary software environment
for the AGC and benchmarking the analysis’ run time on various computing
clusters: the institute SLURM cluster at LMU Munich, a SLURM cluster at
LRZ (WLCG Tier-2 site) and the analysis facility Vispa [2], operated by RWTH
Aachen.
Each site provides slightly different software environments and modes of oper-
ation which poses interesting challenges on the flexibility of a setup like that
intended for the AGC.
Comparing these benchmarks to each other also provides insights about dif-
ferent storage and caching systems. At LRZ and LMU we have regular Grid
storage (HDD) as well as an SSD-based XCache server and on Vispa a sophis-
ticated per-node caching system is used.

1 Introduction

With the high-luminosity LHC coming up in 2029, more data than ever will be recorded.
More recorded data naturally corresponds to more data that needs to be processed in order
to perform physics analyses. This poses several new challenges for analysis software. On
the one hand there is the obvious problem of pure computing power: what is the fastest and
most efficient way to process these vast amounts of data? On the other hand, it is equally
important to design the interfaces of analysis software in such a way that physicists can use
them effectively with ease of use and fast turnaround times.

The Analysis Grand Challenge (AGC) aims to specify possible workflows for a physics
analysis. The reference implementation [3] of the AGC is developed as part of the IRIS-HEP
project and written in Python, using services and libraries from the Scikit-HEP [4] ecosystem
with coffea [5] as the main framework. This effort allows to test and showcase the use of
these tools at a large scale [1].

∗e-mail: david.koch@physik.uni-muenchen.de

The analysis performed within the AGC is a semileptonic tt̄-analysis. It includes a sim-
ple 1-lepton event selection, a top-quark reconstruction using combinatorics, a cross-section
measurement and on-the-fly evaluation of some systematic uncertainties.

It runs on data that are part of the CMS Open Data [6] release, making it ideal for repro-
ducible benchmarks, as there is no experiment-specific affiliation required to access the data.
At the moment, the dataset has a total size of 3.44 TB which corresponds to 948× 106 events
that need to be processed.

The AGC supports a variety of workflows and pipelines, like streaming the data over
the data transformation service ServiceX [7]. We however focus solely on a workflow that
consists of reading the data in the form of ROOT files over the network and distributing the
workload using Dask [8]. We implemented a minor change in the code that allows us to
flexibly switch between job-scheduler backends using dask-jobqueue.

In this work, the AGC is used to perform integration tests and benchmarks on three anal-
ysis facilities located in Germany.

2 Benchmark tests

Analysis facilities come with quite diverse combinations of available hard- and software. To
gain a more general picture on the usability and scalability of the techniques used in the AGC,
we deployed it on different sites, ran the data-processing part of the pipeline and measured
various metrics (see 2.2).

2.1 Sites

We deployed and ran the AGC on the following sites:

LMU The site at the Ludwig-Maximilians-Universität in Munich is an institute cluster con-
sisting of one 20 core node and several desktop computers with 2-8 CPUs per machine avail-
able for distributed computing. The available job-scheduler is SLURM. The data are read
via XRootD [9] from the nearby ATLAS LOCALGROUPDISC at LRZ. The network capacity to
LRZ is 1 GBit/s per node.

LRZ LRZ is a WLCG ATLAS Tier-2 site in Munich. The job-scheduler here is also SLURM.
Data are stored on regular HDD based grid storage as well as on a SSD based XRootD proxy
cache (XCache) server. Here every node has a 10 GBit/s network connection.

Vispa Vispa [2] is an analysis facility operated by RWTH Aachen. It provides a web-based
terminal, code editor and jupyter hub [10]. The job-scheduler used here is HTCondor [11].
Data are stored locally on site-owned SSDs and read via NFS.

2.2 Measurements

The version of AGC deployed at the time (v0) basically performs three tasks: metadata ac-
quisition1, data reading and subsequent processing and plotting. For the sake of these bench-
marks we only consider the first two steps, as they are the steps in the pipeline that run
distributed.

Representing the distribution of computing tasks across multiple workers on a vertical
axis and time on a horizontal axis, the workload can be graphically represented like in fig. 1.

1By now v2 has been released in which the metadata acquisition has been removed.

Figure 1. Graphical representation of the distribution of the workload across multiple workers and the
performed tasks.

First, the task of fetching all required metadata gets performed. Only after it is done, the
processing of the data can begin. Apart from the total run time ttot, different partial run times
can be directly measured: the total processing time tp, which is the total time it takes from the
first processing job to begin until the last processing job finishes, and the sum of all process
times tpi across all workers. The first two run times can be measured directly by the process
which spawns the jobs while the cumulative time can be retrieved via coffea’s tooling. The
time it takes to fetch the metadata can then be calculated by subtracting the process time
from the total run time. Note though that the result will also include time in which Dask
accumulates results and prepares the start of the processing jobs, so it measures not exactly
only the time it takes to acquire the metadata.

Before each measurement it was ensured that more than 90% of the requested workers
were ready. This waiting time is not included in the measurements.

These measurements were repeated on all sites with an increasing number of workers to
observe the scaling behavior. For each number of workers, the same benchmark was run at
least twice on each site. The mean and standard deviation are taken as the resulting run times.

At LRZ, the benchmark was performed first with XCache disabled and then twice with
XCache enabled. Running it multiple times is useful when benchmarking workloads that
contain intensive caching as it is expected that subsequent runs with a full or partially full
cache will run faster. It was explicitly ensured that the cache did not contain any data before
the first run.

As an additional metric to measure the efficiency of the job-scheduler, we define the
overhead factor f as the ratio of the total process time tp and the average process time per
worker t̄p,w:

f =
tp

t̄p,w
=

tp∑
i tpi/n

(1)

where
∑

tpi is the sum of the run times of all processing tasks across all workers and n is the
number of workers.

In cases where the workload is perfectly split up between the workers, each worker runs
jobs for the same amount of time without in-between idle time, therefore the average run time
for processing jobs per worker would be equal to the total processing time and thus f = 1.
If however the same amount of work is distributed unevenly and therefore some workers
are idling (see fig. 2), the total processing time increases while the average process time per
worker stays the same, thus we get f > 1.

Figure 2. Illustration of inefficiently scheduled jobs: one job keeps running while all other workers are
already done, idling.

2.3 Results

20 40 60 80 100 120 140
workers

0

200

400

600

800

1000

1200

1400

s

total runtime ttot

LMU
LRZ
Vispa

Figure 3. Total run time with varying number of workers on all sites

The scaling of the total run time with a growing number of workers (see fig. 3) behaves
as expected with a 1/n dependency. However there is quite a large offset at 200 − 400 s,
meaning the analysis cannot be ran in a shorter amount of time on these sites, independent of
the number of workers. The general scaling behavior is consistent on all sites, however it can
be seen that on LRZ, the benchmarks run slower than on the other two sites. This could be
due to the fact that some nodes on LRZ are already quite old.

Splitting up the total run time into the run time of the subtasks metadata fetching and
processing is shown in fig. 4. Acquiring metadata does not require any computationally
expensive task and is thus expected to be I/O intensive. It is evident that a fast network
connection or even accessing the data locally benefits tasks like this greatly. This can be seen
on the upper plot of fig. 4: on Vispa, data are available on local SSDs and need not be read via
the XRootD protocol, therefore the time to fetch metadata is significantly faster here, saving
up to several minutes. On LRZ and at LMU, the time to acquire metadata roughly scales

20 40 60 80 100 120 140
workers

0

50

100

150

200

250

300

350

400

s

metadata-fetch time
LMU
LRZ
Vispa

20 40 60 80 100 120 140
workers

0

200

400

600

800

1000

1200

s

process time tp

LMU
LRZ
Vispa

Figure 4. Metadata acquisition time and process time. The total run time consists of the sum of the
two.

like 1/n although with large fluctuations. This can be attributed to varying occupancy of the
available bandwidth by other users and is out of our control.

The time it takes to actually download and process the data is shown on the lower plot of
fig. 4. The distribution closely resembles that of the total run time and seems to dominate its
shape.

From these measurements, the overhead factor f (see eq. 1) was calculated and plotted in
fig. 5. It can be seen that it is well above the desired value of f = 1, indicating a large inef-
ficiency in the way the jobs are scheduled. Interestingly, the overhead is mostly constant for
varying numbers of workers. These large values for f can be traced back to occasional jobs
with exceptionally long execution times on a small number of workers while other workers
were idling (see fig. 2 for an illustration of this effect). While the root cause of this problem

20 40 60 80 100 120 140
workers

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

t/t

ratio between process time and average process time per worker
lmu
lrz
vispa

Figure 5. Overhead factor f . At ∼ 1.6, meaning an inefficiency of over 50%, it becomes clear that there
is room for improvement.

XC
ach

e d
isa

ble
d

XC
ach

e e
na

ble
d,

1.
run

XC
ach

e e
na

ble
d,

2.
run

0

200

400

600

800

1000

1200

s

total runtime with XCache at LRZ
50 workers
100 workers

Figure 6. Total run time at LRZ with XCache enabled and disabled, running on 50 and 100 workers.

is yet to be investigated, we suspect the issue to be in Dask. Note that the overhead factor
is a relative quantity and as such does not reflect the absolute performance of a site. Vispa
for example has an overhead factor furthest away from 1 while still performing best in terms
of runtime because it has faster processors and benefits greatly from a rapid acquisition of
metadata.

Lastly, a comparison of total run times at LRZ with and without XCache enabled is shown
in fig. 6. The figure shows measured times when running with 50 and 100 workers with
XCache disabled, then a first run with an enabled but empty XCache and finally a second run
with the cache enabled. A tiny increase in run time can be observed for the first run using an
empty cache which can be explained by the overhead that consists of moving the data to the
cache. That increase vanishes on subsequent runs with a full or partially full cache. However,
no improvement in run time compared to the setup without XCache can be observed. As
caches in general can only speed up processes that are limited by I/O we conclude that this
specific task is in fact not limited by I/O.

3 Outlook

The AGC proves to not only be a powerful showcase of novel analysis workflows but also
a useful tool to benchmark and test analysis facilities in the context of a realistic physics
analysis at scale.

At the sites LMU, LRZ and Vispa we observed a scaling of run times inverse to the
number of workers. The tests however suffer from a large overhead of 2-3 minutes, showing
room for significant improvement.

We measured the overhead factor and found it to be rather high due to a few jobs with
significantly longer run time. The cause of this is yet to be investigated.

Lastly we measured the effect of SSD based caching on the run time of the analysis.
No reduction of the run time was observed, indicating that the analysis at hand is hardly
limited by I/O operations. In future studies it would be interesting to apply alternative analysis
algorithms with high I/O load in order to observe the effect of caches.

Additionally, one should investigate what the analysis is limited by, and what causes the
observed offset in scaling.

References

[1] Analysis grand challenge documentation, https://agc.readthedocs.io/en/latest/, ac-
cessed: 2023-09-15

[2] Erdmann, Martin, Fischer, Benjamin, Geiger, Lukas, Geiser, Erik, Noll, Dennis Daniel
Nick, Rath, Yannik Alexander, Rieger, Marcel, Schlüter, Felix, Schmidt, David Josef,
Urban, Martin et al., EPJ Web Conf. 214, 05021 (2019)

[3] Analysis grand challenge source code, https://github.com/iris-hep/

analysis-grand-challenge/tree/main/analyses/cms-open-data-ttbar, accessed: 2023-09-
15

[4] E. Rodrigues et al., EPJ Web Conf. 245, 06028 (2020), 2007.03577
[5] L. Gray, N. Smith, A. Novak, P. Fackeldey, B. Tovar, Y.M. Chen, G. Watts, I. Krommy-

das, coffea (2023), https://github.com/CoffeaTeam/coffea
[6] CMS open data guide, accessed: 2023-09-15, https://cms-opendata-guide.web.
cern.ch

[7] IRIS-HEP, accessed: 2023-09-21, https://servicex.readthedocs.io/en/
latest/

[8] Dask Development Team, Dask: Library for dynamic task scheduling (2016), https:
//dask.org

[9] XRootD, aceesed: 2023-09-21, https://xrootd.slac.stanford.edu/
[10] JupyterHub, accessed: 2023-09-21, https://jupyterhub.readthedocs.io/en/

stable/index.html

[11] HTCondor Team, HTCondor

