
Job CPU Performance comparison based on MINIAOD
reading options: local versus remote

Justas Balcas1,∗, Harvey Newman1,∗∗, Preeti P. Bhat1,∗∗∗, Sravya Uppalapati1,∗∗∗∗, Andres
Moya1,†, Catalin Iordache1,‡, and Raimondas Sirvinskas1,§

1George W. Downs Laboratory of Physics and Charles C. Lauritsen Laboratory of High Energy Physics
1200 E California Blvd Pasadena, California 91125

Abstract. A critical challenge of performing data transfers or remote reads is
to be as fast and efficient as possible while, at the same time, keeping the usage
of system resources as low as possible. Ideally, the software that manages these
data transfers should be able to organize them so that one can have them run
up to the hardware limits. Significant portions of LHC analysis use the same
datasets, running over each file or dataset multiple times. By utilizing "on-
demand" based regional caches, we can improve CPU Efficiency and reduce
the wide area network usage. Speeding up user analysis and reducing network
usage (and hiding latency from jobs by caching most essential files on demand)
are significant challenges for HL-LHC, where the data volume increases to an
exabyte level. In this paper, we will describe our journey and tests with the CMS
XCache project (SoCal Cache), which will compare job performance and CPU
efficiency using different storage solutions (Hadoop, Ceph, Local Disk, Named
Data Networking). It will also provide insights into our tests over a wide area
network and possible storage and network usage savings.

1 Introduction

The Worldwide LHC Computing Grid [1] (WLCG) is a global collaboration between hun-
dreds of computer centers. They are geographically distributed over the world with various
sizes of numbers of cores and data storage space in each. The WLCG provides data transfer
services for the four main virtual organizations (CMS [3], Atlas [4], LHCb [5], Alice [6])
using two technologies: File Transfer Service (FTS3) [7] and XRootD [8]. XRootD is a dis-
tributed and scalable system for low-latency file access. It is the primary wide-area network
data-access framework for the CMS experiment at the Large Hadron Collider (LHC) [2]. The
motivation of this CPU performance testing in the present AAA (Any Data, Any Time, Any-
where) infrastructure [9] is to improve CMSSW [10] data access for eventual increased use of
it as a transfer protocol. In this paper, we start by presenting current storage technologies and

∗e-mail: jbalcas@caltech.edu
∗∗e-mail: newman@hep.caltech.edu
∗∗∗e-mail: preeti@caltech.edu
∗∗∗∗e-mail: suppalap@caltech.edu
†e-mail: amoya@caltech.edu
‡e-mail: catalinn.iordache@gmail.com
§e-mail: raimis.sirvis@gmail.com



their implementation details within CMS. Then we continue with describing the implemen-
tation of data access in CMSSW and AAA XRootD Federation. In addition, we provide an
overview of the currently used storage technologies and future directions for HL-LHC [11].

The aim of these tests is to provide information for the user community and site adminis-
trators with respect to what to expect in terms of CPU efficiency and network usage for jobs
accessing data locally and or remotely over the wide area network.

2 AAA and CMSSW Infrastructure

Figure 1 shows schematics of the XRootD infrastructure that spans all of the CMS Tier-1 and
Tier-2 sites in Europe and the United States. The hierarchical subscription of XRootD man-
agers (cmsd process) provides resiliency in data access toward clients. Effectively this means
that, if the accessed data are not available at the given site where the job lands, the client will
be automatically redirected to the closest data available within the hierarchy of redirectors
to the storage server where those data exist. Each site’s XRootD server is interfaced with
the local storage system, allowing it to export the CMS namespace current storage systems
(dCache [12] and proxy dCache, HDFS[13], Lustre[14] and DPM[15], EOS[16], Ceph[17]).
Site servers also subscribe to a local redirector. In their turn, the local redirectors from each
site then subscribe to a redundant regional redirector. This creates a large tree-structured
federated storage system: (i) United States: Fermilab and Nebraska (DNS round-robin alias
cmsxrootd.fnal.gov) (ii) Europe: Bari, Pisa, Paris (DNS round-robin alias xrootd-cms.infn.it)
(iii) Transitional: CERN (DNS round-robin alias cms-xrd-transit.cern.ch) Individual users or
grid jobs can request a file from the regional redirector, which will then query the child nodes
in the tree and redirect the user to a server that can serve the file. The entire AAA infrastruc-
ture overlays on top of existing storage systems, allowing users access to any on-disk data
without explicit knowledge of the file location.

The overall collection of software of the CMS experiment referred to as CMSSW, is built
around a Framework, an Event Data Model (EDM), and Services needed by the simulation,
calibration, and alignment, as well as reconstruction modules that process event data used for
physics analysis. The primary goal of the Framework and EDM is to facilitate the develop-
ment and deployment of reconstruction and analysis software.

The CMSSW event processing model consists of one executable, called cmsRun, and
many plug-in modules which are managed by the Framework. All the code needed for
event processing (calibration, reconstruction algorithms, etc.) is contained in the modules.
The same executable is used for both experimental data and Monte Carlo simulations. The
CMSSW executable, cmsRun, is configured at run time by a job-specific configuration file.
This file defines:

• which data to use;

• which modules to execute;

• which parameter settings to use for each module;

• the order or the executions of modules, called path;

• how the events are filtered within each path;

• how the paths are connected to the output files.



Figure 1. AAA, Any data, Anywhere, Anytime is built for the CMS experiment using the distributed
CMS data cache. The resulting system, a hierarchy of redirectors, improves the scientific productivity of
CMS physicists through better access to the data as well as the effectiveness of the storage infrastructure
deployed among the CMS sites on the worldwide grid.

3 Distributed File Systems

We considered the following DFS (Distributed File Systems) - Ceph, Hadoop, XRootD, and
XCache - which are currently used in Caltech [18] and UCSD [19] Tier2 data centers. More
detailed descriptions are available below.

3.1 Ceph

Ceph is a powerful and versatile open-source distributed storage system that has gained sig-
nificant popularity for its ability to provide scalable, high-performance, and fault-tolerant
storage solutions. With Ceph, organizations can manage their data across clusters of com-
puters, utilizing a unified storage pool accessible through various interfaces such as object
storage, block storage, and file storage. One of Ceph’s standout features is its use of a dis-
tributed architecture, where data is distributed across multiple nodes to ensure redundancy
and prevent data loss in the event of hardware failures. Ceph’s flexible design allows it to be
deployed in various configurations, from small-scale setups to large data centers, and it of-
fers seamless integration with popular virtualization platforms and cloud environments. This
adaptability, combined with its cost-effectiveness and robustness, makes Ceph a compelling
choice for running it as a Storage solution for CMS Experiment. For the following tests below
- we installed a dedicated Ceph Filesystem of a total of 10 nodes, each with 3 HDDs (Hard
Disk Drives) and 1G Uplink.

3.2 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System (HDFS) is a fundamental component of the Apache Hadoop
ecosystem, designed to efficiently store and manage vast amounts of data across distributed
clusters of commodity hardware. HDFS employs a unique approach to data storage, break-
ing large files into smaller blocks and distributing these blocks across multiple nodes in the
cluster. This enables parallel processing and high throughput for both reading and writing
data. The system’s fault tolerance mechanisms ensure data reliability by replicating each



block multiple times across different nodes, reducing the risk of data loss due to hardware
failures. Its adaptability and scalability have made a huge impact on US-CMS Tier2 sites,
where it is able to provide Petabytes of scalable storage for CMS. For the following tests
below - we used production Hadoop installation of 8PB, deployed between many compute
and data nodes (ranging from 3 disks to 60 disks per server).

3.3 XRootD

XRootD is an open-source software framework designed to facilitate efficient and scalable
access to remote data storage and distribution. Originally developed for the high-energy
physics community, XRootD has gained widespread adoption in various scientific and data-
intensive fields. At its core, XRootD provides a client-server architecture that enables users to
remotely access, manage, and transfer large datasets across geographically distributed sites.
XRootD supports a range of data access protocols, making it versatile enough to integrate
with different data storage solutions, such as local file systems, object stores, and distributed
file systems. Researchers and institutions benefit from XRootD’s ability to efficiently handle
massive datasets, enabling collaborative research, analysis, and data sharing on a global scale.
For the following tests - we tested multiple endpoints reading data remotely over a wide area
network.

3.4 XRootD Cache

XRootD caching is a crucial feature within the XRootD framework that significantly en-
hances data access efficiency and reduces latency for distributed data storage and retrieval.
The caching mechanism allows frequently accessed data to be stored temporarily on local
storage nodes, closer to the applications that need it. This strategy effectively minimizes
the need for repetitive data transfers over the network, resulting in faster data access times
and reduced load on the remote storage systems. XRootD caching is particularly valuable in
scenarios where large datasets are shared among multiple computational tasks.

3.5 Named Data Networking (NDN)

Named Data Networking (NDN) [21] represents a forward-thinking and innovative approach
to internet communication and data distribution. Departing from the traditional host-centric
model, NDN focuses on content retrieval by naming data itself rather than relying solely on
host addresses. This paradigm shift introduces numerous advantages, including enhanced
data security, reduced data redundancy, and improved content delivery. In NDN, data be-
comes the central entity, enabling efficient in-network caching and facilitating data sharing.
When a user requests specific content, the NDN routers collaboratively locate and deliver
the content based on its name, leveraging the inherent caching capabilities to expedite future
access. This design inherently lends itself to scenarios where content dissemination, such as
video streaming or software distribution, is paramount. NDN’s potential to mitigate some of
the challenges of today’s internet architecture makes it an intriguing candidate for shaping
the future of network communication and data sharing.

4 Testing environment

For the following tests, we choose one of the user analysis datasets, named: /DYJetsToLL_M-
50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISummer16MiniAODv3-
PUMoriond17_94X_mcRun2_asymptotic_v3_ext2-v1/MINIAODSIM. Given available



space at remote sites, All tests are running 269 jobs (that accounts of total 1TB data from
the dataset). Only 1 test is run at a time and all these tests are running on eight dedicated
machines without any external load. To note, data is removed from cache servers before
repeated tests and the cache is empty before each run. Each test is described below:

• Ceph - dedicated Ceph installation for these tests between a total of 10 nodes (AMD
Opteron 6378, 94GB RAM), each with 3 HDDs and 1G Uplink. Ceph configuration:
1 Metadata Server, 3 Monitors, Replication 2, Default Object/Stripe size, 100PGs/Disk,
Ceph was mounted using Kernel drivers.

• CephClient - dedicated Ceph installation for these tests between a total of 10 nodes, each
with 3 HDDs and 1G Uplink. This test used the same Ceph configuration as the Ceph
Kernel mount test above. Ceph was mounted using the Fuse client.

• Hadoop - Production Hadoop distributed file system. These tests have been repeated mul-
tiple times as we find needed improvements. Repeated tests are highlighted as Hadoop1,
Hadoop2.

• Local - Before job startup, data is downloaded to a local disk, and the CMSSW job reads
data from the local disk. CMSSW is not making any remote open/read operations for job
runtime.

• RedirFnal - Instruct job to read data via AAA US-CMS Redirector. At the time of run -
data was available at 6 Disk Sites: Cern, Caltech, Nebraska, Griff, IFCA, and DESY. 1

• RedirCaltech - Job reads data via Caltech Tier2 Redirector (9 XRootD Data Origins be-
hind a single redirector). 1

• CERN - Enforcing jobs to read data only from CERN XRootD Redirector. 1

• RedirCache - Reading data over SoCal Cache [20] Redirector distributed between 2 Sites:
Caltech and UCSD. Tests (RedirCache1) were repeated to highlight identified issues be-
low. 1

• CacheDirect - Reading directly over single cache servers. Tests were repeated
(CacheDirect1) after a few identified issues highlighted below.1

• CacheCern - Reading data via Cache, while data is only available on CERN Storage,
under /store/user/jbalcas. Tests were repeated multiple times and shown as: CacheCern1,
CacheCern2. 1

• NDN - Reading data over NDN Network, which is built on top of XRootD. NDN uses 1
Server to serve data: 2x Silver 4110, 94GB RAM, 10x8TB HDD Raid 0, 100Gbps Nic.

5 Results

In Figure 2, we show the total job runtime for all tests. Based on the results we identified
several facts to highlight from Figure 2.

• Ceph Kernel mount is faster than Ceph FUSE Client. Fuse involves a context switch be-
tween user space and kernel space for every file system operation, which adds overhead.
Also, FUSE requires data to be copied between user and kernel space, which results in
additional memory overhead. FUSE itself is designed to provide isolation and security for
applications.

1Data Reading is based on the Multisource algorithm: https://github.com/cms-sw/cmssw/blob/master/Utilities/
XrdAdaptor/doc/multisource_algorithm_design.txt

https://github.com/cms-sw/cmssw/blob/master/Utilities/XrdAdaptor/doc/multisource_algorithm_design.txt
https://github.com/cms-sw/cmssw/blob/master/Utilities/XrdAdaptor/doc/multisource_algorithm_design.txt
https://github.com/cms-sw/cmssw/blob/master/Utilities/XrdAdaptor/doc/multisource_algorithm_design.txt


Figure 2. Total Job Runtime for 269 jobs in each of tests. Blue color- successful jobs. Orange - for
failed jobs.

• Hadoop tests allowed us to identify several issues and improvements for the Production
Filesystem. 1st bar - Identified a user overloading filesystem with reading RAW files over
a wide area network; 2nd bar - Hadoop Balancer used in production heavily moves objects
between Hadoop Cluster disks due to too high concurrent moves/dispatcherThread param-
eters - had to decrease those values. 3rd bar - Re-run of all tests after the first 2 fixes and it
showed a huge improvement on the production cluster.

• Many remote reads, which involve XRootD protocol, showed failed jobs. Any time a job
fails, all job runtime is wasted. Based on the log and job analysis, this was identified as a
bug inside the CMSSW XRootD source selection algorithm. Multi-source-based selection
should reconsider previously marked bad sources as possible data access points. In case
data is available only at a few endpoints - remote connections can be lost, server rebooted.

• XRootD Caches, similarly to any distributed filesystem depend a lot on the healthiness
of disks. Several tests have identified that a failing disk (soft I/O errors) can affect job
performance.

• XRootD Caches depend on the data source providing data. In case of a bad data source
and cache unable to prefetch the data, wasted time is low (90s as configured on CMSSW).
In the case of a good data source, Caches allow to hide a huge latency and improve CPU
Efficiency significantly over long distances. (Caltech to CERN is 170ms distance).

Figure 3 shows only equally successful jobs between different runs and it confirms the obser-
vation of caches. Caches are able to perform better than any other storage solution and give
almost 20% CPU Performance boost in terms of event throughput compared to local reads
(Ceph, Hadoop). The cache is not only able to improve performance for locally accessed
data but also for any data over a wide area network. Some of the issues we encountered
are: CMSSW Source re-selection on caches duplicates data and stores the same input file on
multiple XRootD caches.



Figure 3. Event throughput for equally successful jobs (169) between different tests.

6 Summary

This study aimed at optimizing remote data reads to improve CPU efficiency. The study is
motivated by the upcoming High-Luminosity LHC (HL-LHC) phase, which will generate sig-
nificantly larger data volumes. The authors investigate different storage technologies includ-
ing Ceph, Hadoop, XRootD, and Named Data Networking (NDN). Some key findings and
observations from the study identified that hardware failures and disk health in distributed file
systems can affect performance for a collaboration, but similarly, XRootD caching can sig-
nificantly improve CPU performance, particularly over long distances, and minimize wasted
time for data access. In conclusion, we received valuable insights and lessons into optimiz-
ing data access and storage solutions for the CMS experiment. These research outcomes are
essential in addressing increasing data volume access in high-energy physics, particularly for
HL-LHC.

References

[1] WLCG Project website: https://home.cern/science/computing/grid
[2] Bird I et al. "Computing for the Large Hadron Collider", 2011 Annu. Rev. Nucl. Part. S.

61: 99 doi: 10.1146/annurev-nucl-102010-130059
[3] CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3 (2008) S08004,

doi:10.1088/1748-0221/3/08/S08004
[4] ATLAS Collaboration, The ATLAS Experiment at the CERN LHC, JINST 3 (2008)

S08003, doi: 10.1088/1748-0221/3/08/S08003
[5] LHCb Collaboration, The LHCb Detector at the LHC, JINST 3 (2008) S08005 doi:

10.1088/1748-0221/3/08/S08005
[6] ALICE Collaboration, The ALICE experiment at the CERN LHC, JINST 3 (2008)

S08002 doi: 10.1088/1748-0221/3/08/S08002
[7] A A Ayllon et al. "FTS3: New Data Movement Service For WLCG", 2014 J. Phys.: Conf.

Ser. 513 032081 doi: 10.1088/1742-6596/513/3/032081
[8] XRootD project page: http://www.xrootd.org/



[9] K. Bloom et al. "Any Data, Any Time, Anywhere: Global Data Access for Science",
2015 arXiv:1508.01443

[10] CMS Software framework, http://cms-sw.github.io/
[11] P Agostini et al. "The Large Hadron–Electron Collider at the HL-LHC", 2021 J. Phys.

G: Nucl. Part. Phys. 48 110501 DOI: 10.1088/1361-6471/abf3ba
[12] A P Millar et al. "dCache, agile adoption of storage technology", 2012 J. Phys.: Conf.

Ser. 396 032077 doi: 10.1088/1742-6596/396/3/032077
[13] Apache Hadoop Project page: https://hadoop.apache.org/docs/stable/hadoop-project-

dist/hadoop-hdfs/HdfsDesign.html
[14] Lustre Project page: https://www.lustre.org
[15] DPM Project page: https://lcgdm.web.cern.ch/dpm
[16] Peters A J and Janyst L. "Exabyte Scale Storage at CERN", 2011 J. Phys.: Conf. Series

331 052015 doi: 10.1088/1742-6596/331/5/052015
[17] Ceph Project page: https://ceph.io/
[18] Caltech Tier2 page: https://tier2.hep.caltech.edu
[19] UCSD page: https://ucsd.edu
[20] E. Fajardo et al, "Moving the California distributed CMS XCache from bare metal

into containers using Kubernetes" EPJ Web of Conferences 245, 04042 (2020). DOI:
10.1051/epjconf/202024504042

[21] Susmit Shannigrahi et al. "Named Data Networking in Climate Research and HEP Ap-
plications" 2015 J. Phys.: Conf. Ser. 664 052033 doi 10.1088/1742-6596/664/5/052033


	Introduction
	AAA and CMSSW Infrastructure
	Distributed File Systems
	Ceph
	Hadoop Distributed File System (HDFS)
	XRootD
	XRootD Cache
	Named Data Networking (NDN)

	Testing environment
	Results
	Summary

