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Abstract. GlideinWMS is a distributed workload manager that has been used in
production for many years to provision resources for experiments like CERN’s
CMS, many Neutrino experiments, and the OSG. Its security model was based
mainly on GSI (Grid Security Infrastructure), using X.509 certificate proxies
and VOMS (Virtual Organization Membership Service) extensions. Even when
other credentials, like SSH keys, were used to authenticate with resources, prox-
ies were also added all the time, to establish the identity of the requestor and the
associated memberships or privileges. This single credential was used for ev-
erything and was, often implicitly, forwarded wherever needed. The addition of
identity and access tokens and the phase-out of GSI forced us to reconsider the
security model of GlideinWMS, to handle multiple credentials which can differ
in type, technology, and functionality. Both identity tokens and access tokens
are supported. GSI proxies even if no more mandatory, are still used, together
with various JWT (JSON Web Token) based tokens and other certificates. The
functionality of the credentials, defined by issuer, audience, and scope, also dif-
fer: a credential can allow access to a computing resource, or can protect the
GlideinWMS framework from tampering, or can grant read or write access to
storage, can provide an identity for accounting or auditing, or can provide a
combination of any the formers. Furthermore, the tools in use do not include
automatic forwarding and renewal of the new credentials so credential lifetime
and renewal requirements became part of the discussion as well. In this paper,
we will present how GlideinWMS was able to change its design and code to
respond to all these changes.

1 Introduction

GlideinWMS has been an early adopter of JWT-based token authentication. This has been
quite a ride with many considerations and lessons learned that could benefit other software
going through a similar transition.

The next section will introduce the GlideinWMS system and the following will introduce
the security model. Then two sections will present how credentials were handled with X.509
and the model discussion and redesign ushered in by tokens. Finally, this paper will conclude
with the lessons learned during the implementation of token support in GlideinWMS and the
rationale of the credential handling refactoring currently in progress.

*e-mail: marcom@fnal.gov



2 The Glidein Workload Management System

GlideinWMS [1, 2] is a pilot and pressure-based Workload Management System (WMS)
provisioning computing resources in a distributed environment. Its users can request one
or more customized elastic HTCondor Software Suite (HTCSS)[3] clusters, User Pools, in
green in figure 1, where the users run their computations. To do so GlideinWMS sends
to a variety of computing resources as shown in figure 1 Glideins, also called pilot jobs to
distinguish them from the scientific computations, the user jobs. It has been and is used at
scale in production by many collaborations, including the Compact Muon Solenoid (CMS)
experiment, many Fermilab experiments, and the OSG for more than 10 years. The Virtual
Organization, VO, is the computing model abstraction of these collaborations, so we’ll use
the terms interchangeably. Most scientists will not use directly GlideinWMS or the clusters
it provides, they will interact instead with the various tools or portals like CRAB, JobSub, or
OSG-Connect, provided by the scientific collaborations.

Frontend - Job
Queue

Overlay system

Glidein

™ Worker

J Glidein
e Giidein

~ Worker

Factory

~ Worker

Worker

Figure 1. GlideinWMS system. GlideinWMS components are in blue, the User Pool is in Green, and
the computing resources are in other colors.

The key component is the Glidein, the pilot job. It is a program, sent to many resources
that match the preliminary requirements of the user jobs, to test and set up each computing
resource to run the user jobs. It can auto-detect and report node resources like CPU cores,
memory, disk, and GPUs, can install common resources like a container runtime or a dis-
tributed file system, and provides monitoring and audit information. It also stores and uses
pilot credentials and it safely receives and stores user job credentials. It finally joins the User
Pool to run one or more user jobs, in parallel and in sequence depending on the needs and
availability.

The Factory and clients like the VO Frontend or HEPCloud’s Decision Engine[4] com-
plete the GlideinWMS system. For clarity, in this paper we’ll consider a system with one
Frontend, one Factory, and their Glideins. Actual deployments may include multiple clients,
differing in how they calculate the requests for the Factory, and multiple Factories, providing
a redundant distributed system.

The Factory is in charge of submitting Glideins to the different Compute Entrypoints,
CEs. It knows how to reach each computing resource, which VOs are supposedly supported,
which protocols and authentication methods are supported, and if there are throttling require-
ments. It submits Glideins to the Compute Entrypoints maintaining on each one the pressure,
i.e. number of queued and running Glideins, requested by its clients. The Factory monitors
the Glideins and it hosts a secure mailbox used to exchange requests and status messages with
the clients. It also caches the credentials necessary to submit Glideins or to be forwarded to
the Glideins.



The Frontend and other clients are aware of the users’ requests and the running and
queued Glideins that can be used for those requests, they receive resource status informa-
tion from the Factory, and they use heuristics to update the requests to the Factories so that
all the user jobs can run promptly, all limits and policies are respected, and no resources are
wasted. The Frontend is generally operated by the VOs or on their behalf and is the custodian
of most credentials used in the GlideinWMS system: the ones to authenticate with the Fac-
tory, the ones to submit Glideins to CEs, the ones to join the Users Pool, and the ones Glieins
may use to access VO-level services like monitoring, databases or storage volumes.

3 Security domains and federated trust

The framework is distributed and allows many to many connections: there can be multiple
Frontends, each providing clusters for multiple collaborations and talking to one or more
Factories, dedicated or shared by multiple Frontends. Each Factory talks to many resources
and the sets of resources available at each Factory generally overlap.

Figure 2 shows the three types of security domains involved:

1. The VO, managing the Access Points to submit user jobs and frequently owning the
Frontend or at least the credentials used in there.

2. Factory operation, frequently handled by consortia, like OSG, since a single Factory
can handle several Frontends and hundreds of resources. and concentrating in the hands
of a few experts allows economies of scale.

3. The resource owners, universities, laboratories, or commercial operators managing the
computing resources, like clusters or clouds, and granting access to run the VO jobs.
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Figure 2. Security domains in the GlideinWMS system.

Each VO provides user credentials, certifies whether a user belongs to it, states the capa-
bilities of each user, and negotiates resource access and priorities with the resource owners.
Factory operators are trusted third-party operators. Each resource owner manages the com-
puting and storage resources and enforces arbitrary systems to authenticate the users and
allow access. These are normally universities, National Laboratories, or commercial entities
like AWS or GCE, which negotiated collective policies for some VOs. There is a transitory
trust: VOs certify their members, and resource providers allow access to VOs. This way
users can run on the resources. In X.509 VOs maintain a membership server, VOMS [5],
and sign proxy extensions. Token providers use information from institutional databases and
issue tokens accepted by the service providers.



4 The GSI authentication model

In the X.509 model hosts and users are identified by certificates with appended signed VO
membership extensions. Sometimes proxies are used instead of the certificates to improve
security by limiting time or scope. Each host, client or server, is using its certificate to prove
its identity. Each user is forwarding her/his certificate, or a proxy, with all her/his computing
or storage requests. Two facts make X.509 relatively easy for service implementers: there are
few credentials involved and it has been around for over 20 years, so it has been integrated
into most systems and has many tools. The X.509 proxies are frequently forwarded and
renewed automatically making them de facto "omnipresent and all-capable".
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Figure 3. X.509 authentication in GlideinWMS. X.509 credentials, in red, move from the Frontend
storage (cylinder) to the caches (tables) and are used multiple times (hexagons).

As visible in figure 3, certificates or proxies, in red, are placed in the Frontend and for-
warded and cached in the Factory. They are used in three different ways: the Factory uses
them most of the time to have access to the CE (1) and forwards them to the Glidein where
they allow the Glidein to join the User Pool (2) and to access VO services like accounting,
storage volumes, databases, and monitoring (3). Also when a different credential is used to
access a CE (1), like the SSH keys used for some High Performance Computing (HPC) re-
sources, the proxy is still traveling along and forwarded to the Glidein for all other functions
(2,3).

In the next section, we’ll see how this model changes when generalized and when tokens
are used.

5 The granular model of JWT

JSON Web Token (JWT) is a proposed Internet standard[6] for creating data with optional
signature and/or optional encryption whose payload holds JSON that asserts some number of
claims. The tokens are signed either using a private secret or a public/private key. JWTs are
widely adopted in the industry

The reasons behind the transition from X.509 to tokens are discussed at length in Dack
et al. [7], here we’ll focus on the consequences for the security model and the service imple-
mentations.

Credentials have a purpose, a type, and a time and space granularity. X.509 proxies were
generally multi-purpose and long-lived, tokens are generally short-lived, very granular, and
have a single purpose. As shown in figure 4, in the GlideinWMS system we identified a few
functions that can be fulfilled by different credentials:



o the cluster credentials, C-CRED in yellow, which allow a Glidein to join a User Pool
o the pilot credentials, P-CRED in gray, used at the CE to access the computing resources

e multiple service credentials, S-CRED in green, used by the Glidein to access VO services
like authenticated monitoring services, storage volumes, or databases, accessible to all jobs
running on that Glidein and belonging to the same VO.

e User jobs can bring multiple job credentials, J-CRED in orange, e.g. to read input files or
write output files.

e special purpose credentials are issued and verified by the same service, like the CE cre-
dential CE-CRED in dark gray, provided by the CE and used by the Glidein to record
monitoring and audit information
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Figure 4. Token authentication in GlideinWMS. Many different single-purpose credentials (document
icons of different colors) are stored, forwarded, and used throughout the system.

GlideinWMS was already supporting multiple credential types, like X.509, and SSH keys,
but they were always companions of the main X.509 proxy. Now is important to declare the
purpose and to define whether credentials are forwarded, used together, or if one is a fall-back
alternative. This complicates the specification of available credentials, in the Frontend, the
specification of required credentials, in the Factory, and the matching to understand if a group
of User jobs has all the required credentials to run on a given resource.

The increased spatial granularity brought new complexity as well. To mitigate against
compromised resources or Man-In-The-Middle attacks, each CE is sent a different credential.
Since there are too many resources in a Factory to pre-generate short-lived fresh tokens for
all of them and since a Frontend may know which resources are available only at run-time
when a match is attempted, the tokens must be generated on the fly after the matches.

Mechanisms need to be in place to forward and renew credentials. These are available and
implicit for X.509 but are missing for tokens. And the increased granularity of tokens both
in the space and time domains makes this even more pressing. A Glidein may be queued at
computing resources for several hours, up to a few weeks on HPC resources, and then it will
run for many hours generally up to a handful of days. During this whole time, it needs valid
credentials to connect to the User Pool and access VO storage resources. A single proxy could
outlast the duration necessary for a Glidein to complete even in the worst-case scenario. Not
so for JWT. A new failure mode became visible when a production User Pool was restarted:
HTCSS lost all the sessions’ information. The system was normally resilient to these restarts.



When the Glideins tried to establish a new session with the restarted User Pool they failed
because their tokens were expired and this caused all the Glideins and the jobs they were
running to die. A token refresh mechanism is the obvious solution but alternatives are being
investigated, like modifying the HTCSS main server to checkpoint session information and
accept the old one right after a restart.

6 Adding token support to GlideinWMS

The support of tokens in GlideinWMS has been a long process with some notable lessons
learned. We started discussing tokens in the Spring of 2019 and they became a high priority
in August 2019 when the OSG technical lead declared the intention to drop X.509 support
by early 2020. The project dedicated a developer for the effort and the plan was to use token-
auth, the HTCSS implementation of JWT, now IDTOKENS, to authenticate Glideins with
the User Pool and to authenticate Frontends with Factories, and to use resources supporting
INDIGO IAM [8] and SciToken [9]. By October we had a prototype authenticating only with
tokens: Glideins are very flexible and we added a token-auth token to the payload to authen-
ticate with the user pool and changed the Factory to use INDIGO tokens to authenticate with
a test CE. X.509 proxies were still in the configuration and forwarded through the system,
only they were not used. OSG plans changed and so did some of the underlying technolo-
gies, e.g. HTCSS moved to IDTOKENS. Took about three years to have a production-ready
GlideinWMS supporting tokens, partly due to COVID-19 disruptions, mostly due to techni-
cal complications. In March 2020 GlideinWMS v3.7 was using token-auth for the Glidein if
all the underlying HTCondor versions were supporting it. In November 2020 v3.7.1 added
token support for submission to resources, added token authentication between Frontend and
Factories, and adapted to the changes in HTCondor, now using IDTOKENS. 2021 was used
to remove X.509 requirements (until now tokens were sent in addition to X.509 proxies), to
fix bugs highlighted by wider adoption, and to implement transition mechanisms. The initial
OSG plan for a hard transition gave place to a more gradual one and the need for fall-back
mechanisms if some resources or some components were not supporting tokens. The follow-
ing releases added more granularity generating different User Pool tokens for each resource
and with versions 3.7.5 (Python 2) and 3.9.5 (Python 3) tokens started being used in produc-
tion by OSG and CMS. It is only at the end of 2022 with v3.10.1, full support of credential
generators, token support for Glideins running on Cloud and HPC, and better handling of
fall-back to X.509, that we consider the transition complete. The next step, still in progress,
is a refactoring and hardening of all the GlideinWMS code handling credentials.

Being an early adopter, exposed GlideinWMS to surprises and changes in other systems
and requirements. We started working with a custom build of HTCSS because token support
was not in any release, then we used many release series, from v8.9.x to v9.x, v10.x, and
now v.23.x series, encountering undocumented features and many changes in the tokens and
security model. Initially, we were expecting a hard transition but then became evident that a
soft transition, with fall-backs, multiple credentials at the same time, and features to reduce
the Factory operators’ load and be resilient to misconfigured CEs, was important. Under-
standing better the capabilities of tokens added new requirements, like generating different
tokens for each CE, to increase the system security in case of a compromised CE. X.509
credentials had many tools, to verify them, to auto-renew them, to forward and renew them.
Many tools for tokens have been added, but token renewal remains a problem, exacerbated
by its recommended short lifespan. Once we started to remove X.509 proxies, we kept dis-
covering components of the ecosystem GlideinWMS is part of that relied on them: the CE
monitoring, audit logs, and OSG accounting to name a few of the late ones. Last but not least,
X.509 is very ingrained in the GlideinWMS code: most functions or variables are designed



for X.509 Proxies and are also called Proxy...; many checks interspersed in all code make
sure that proxies are present, configured correctly, and forwarded all the way to the Glidein.
This had to be changed and created for tokens.

Many problems encountered have been solved thanks to collaborations with many differ-
ent groups. GlideinWMS had already a strong collaboration with OSG, operating Glidein-
WMS servers in production and supporting the software release distribution, and with the
HTCSS developers in Madison, WI, since GlideinWMS relies heavily on HTCondor for the
User Pools and mechanisms to access the computing resources. Having a direct line with the
HTCondor team was instrumental in getting quick changes, suggestions and help with un-
documented features. And the OSG VO and Factory operators helped ironing out the initial
production deployment. SciToken and INDIGO IAM provided the initial training and tools
to create and use tokens. And the participation to the weekly call of the WLCG Security
Group helped GlideinWMS to be informed about token evolution and gave the opportunity
to provide feedback from practical use cases.

Being a trailblazer, GlideinWMS contributed to pushing forward the transition to tokens
described in Dack et al.[7]. It tested new technologies, discovered shortcomings evident only
after running actual systems without X.509, and helped resolve them. The GlideinWMS team
hand-held the first VOs transitioning to tokens, helping with solutions involving the whole
ecosystem. GlideinWMS aggressive schedule may be one of the reasons why WLCG and
OSG computing are fully transitioned to tokens, ahead of storage.

7 Code refactoring

Implementing support for JWT in GlideinWMS highlighted a few problems with the way
our software handled credentials. Before JWTs, we already supported several credential
types, such as X.509 certificates (and proxies), RSA keys, and the traditional username and
password. Adopting JWTs required us to add two new credential types to the list: SciToken,
covering both SciToken and INDIGO IAM profiles, and IDTOKEN, both variants of the JWT
standard.

The code handling the credentials was mostly not Object-Oriented and comprised mostly
of big functions handling a lot of special cases for different credentials and combinations.

With each new credential type, we introduced a lot of complexity to the code. New
functions, conditions, and error-handling methods had to be created to make sure we would
properly support the new technology without compromising our traditional authentication
methods.

The following segment of code in figure 5 shows an example of the complexity intro-
duced by adding support for a new credential type. Each new credential type requires par-
ticular functions to parse their string standards, check their validity, handle their files, etc.
Below you can see we created the “token_util" library to handle these operations for JWT
in GlideinWMS. Additionally, we had to add some very unique conditions, such as the one
shown below. As you can see, the third “if" statement checks if the token is expired. If it
is, we continue anyway. The reason for this seemingly odd behavior is to support credentials
fall-backs.

The initial motivation to support credential fall-backs comes from an operations issue. In
the traditional configuration model of the GlideinWMS Factory, operators specify a single
authentication model required for each entry. As each entry represents a site, during the tran-
sition from X.509 proxies to SciTokens, Factory operators would have to keep track of when
those sites would start supporting the new credential type to update the entry authentication
method accordingly. As the SciToken adoption rate varied considerably from site to site, this
quickly became a major concern. To address this issue, we implemented a temporary special



if "scitoken" in auth_method:
if os.path.exists(scitoken file):
if token util.token_file expired(scitoken_file):
entry.log.warning (f"Found frontend scitoken
'{scitoken_file}', but is expired. Continuing")
if "ScitokenId" in decrypted params:
scitoken_id = decrypted_params.get ("ScitokenId")
submit_credentials.id = scitoken_id
else:
entry.log.warning (
"SciToken present but ScitokenId not found, "
f"continuing but monitoring will be incorrect for
client {client_int_name}."
)
else:
entry.log.warning (f"auth method is scitoken, but file
\'(scitokenifile)' not found. skipping request")
return return_dict

Figure 5. Code

behavior for the “grid proxy” authentication method, which was the method used by the vast
majority of Factory entries. As per the new policy, GlideinWMS Frontends would always
send available SciTokens along with X.509 proxies when requesting Glideins from Factories.
For this reason, when we find an expired SciToken we cannot stop the whole request, as it
might still have a valid grid proxy which would succeed. Implementing this policy required
adding a lot of special condition checks throughout the code.

To address the issues we have discussed and other similar problems, we decided to refac-
tor the way GlideinWMS handles credentials. The new model consists of a new library that
implements credential classes and related functions to handle secure authentication in a much
more robust and streamlined way. By implementing a self-contained library, we are also able
to reuse the new GlideinWMS credentials system in other Frontend-like clients for the Fac-
tory, like HEPCloud’s Decision Engine.

The new library will implement the following features: abstract credential classes that can
be handled generically throughout the code, revamped authentication methods that support
multiple credential types and have native fallback capabilities, well-defined single purposes
for credentials, and an expanded functionality of the, already present, generators.

A prototype of the library is expected by the end of 2023, to be included in the Glidein-
WMS development release in Q1 of 2024. The investment is considerable: for one year it will
occupy almost exclusively one developer with reviews and contributions from other members
of the team, which accounts for about 0.6 FTEs, one-third of our total development effort.

8 Conclusions

GlideinWMS with token and hybrid support has been running in production since the end
of 2021 facilitating a smooth transition of the authentication methods used by the different
collaborations. As of 2023, most VO use exclusively tokens to authorize computing. Some
VO still uses X.509 to access storage.

Early adoption has its complications, mainly due to the lack of support in other tools and
changing requirements, but it helps push forward the adoption in the community.

Token migration is not a drop-in replacement with isolated changes: it can be a good
time to refactor the code handling credentials, but you should not stop there. The shorter life
span, the spatial granularity, and the need to consider always multiple credentials will cause
substantial changes in the system, may require the dynamic generation of previously static
credentials, and will require an overall rethinking of all components.
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