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Abstract. Machine Learning (ML) has become one of the important tools for
High Energy Physics analysis. As the size of the dataset increases at the Large
Hadron Collider (LHC), and at the same time the search spaces become bigger
and bigger in order to exploit the physics potentials, more and more computing
resources are required for processing these ML tasks. In addition, complex
advanced ML workflows are developed in which one task may depend on the
results of previous tasks. How to make use of vast distributed CPUs/GPUs
in WLCG for these big complex ML tasks has become a popular research
area. In this paper, we present our efforts enabling the execution of distributed
ML workflows on the Production and Distributed Analysis (PanDA) system
and intelligent Data Delivery Service (iDDS). First, we describe how PanDA
and iDDS deal with large-scale ML workflows, including the implementation
to process workloads on diverse and geographically distributed computing
resources. Next, we report real-world use cases, such as HyperParameter
Optimization, Monte Carlo Toy confidence limits calculation, and Active
Learning. Finally, we conclude with future plans.

1 Introduction

Machine Learning (ML) has emerged as a crucial tool within the ATLAS experiment [1]
at the LHC [2]. The continuously growing data volume and the complexity of the physics
analysis have intensified the interest in large-scale ML applications. Different Dsitributed
ML methods [3, 4] have been applied. However, these methods are mainly based on
one single cluster system and with a single workload. In the context of this paper, a
distributed ML workflow involves a sequential chain of workloads, where one or more
workloads incorporate machine learning tasks and these workloads can be distributed
across geographically heterogenerous computing resources. It encompasses various types
of workloads, and achieving full automation in their execution is crucial.
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The Production and Distributed Analysis (PanDA) system [5, 6] is a robust workload
management system that excels in handling distributed computing resources and is well-
suited for large-scale ML workloads. It can efficiently schedule workloads to large-scale
distributed heterogeneous computing resources among different institutes and organizations.
Another key advantage of PanDA is that it provides users a uniform view for different
computing resources. It abstracts the underlying computing resources, presenting a unified
interface for submitting and managing workloads. Users can submit workloads to PanDA
without needing to be aware of the specific details of the computational resources. PanDA’s
capabilities to transparently manage diverse computing resources are vital for the execution
of distributed ML workloads.

The intelligent Data Delivery Service (iDDS) is a workflow orchestration system designed
to automate complex and dynamic workflows. The intelligent Data Delivery Service has been
developed to support emerging use cases [7, 8] in ATLAS and other experiments. It is in
production in ATLAS, Rubin Observatory (LSST) experiment [9, 10] and sPHENIX [11]. It
orchestrates the execution of workloads within each workflow, considering the topological
dependency among these workloads, with advanced functions such as workflow description
with Directed Acyclic Graph (DAG), conditional branching, iterative sequences, polymorphic
workloads, and so on. iDDS is flexible in handling a wide variety of complex workflows,
making it suitable for a wide range of automation scenarios. iDDS provides an easy way to
build large-scale distributed ML workflows.

We can create a powerful framework for distributed large-scale ML workflows based
on PanDA and iDDS, as shown in Figure 1. PanDA serves as the execution engine
for large-scale ML workloads on distributed computing resources. iDDS orchestrates the
workflow, automating the execution chain of consistent workloads. It triggers the execution
of downstream workloads based on the results of upstream workloads, allowing advanced
automation and processing.

Figure 1: An integrated workflow with PanDA and iDDS, where iDDS automates
complex and dynamic workflows, and PanDA schedules workloads to large-scale distributed
heterogeneous computing resources.



2 Workflow Orchestration for distributed ML

iDDS orchestrates the execution of different workloads within each workflow. It supports
conditional branching in workflows with condition functions. A condition function is one of
system-defined functions, a user-defined function, or the results of a workload. In some ML
use cases, certain workloads collect the results of upstream workloads to make decisions
regarding the selection and execution of downstream workloads. Conditional branching
enables a wide range of distributed ML use cases.

Figure 2 shows an iterative workflow, where iDDS aggregates the results from previous
workloads to generate new workloads and submit them to PanDA. PanDA analyzes the
characteristics of those tasks and schedules them on distributed heterogeneous computing
resources, which improves overall efficiency in large-scale ML workloads. PanDA and iDDS
work together to streamline distributed ML workflows.

Figure 2: An iterative workflow, where iDDS aggregates the results from previous workloads
to generate new workloads and submit them to PanDA.

3 Use Cases

3.1 Distributed HyperParameter Optimization

In ML, HyperParameter Optimization (HPO) is a critical task to tune the parameters
that control the training process iteratively. In geographically distributed environments,
implementing the iterative process of HPO can be challenging due to the lack of direct
access to the results of previous workloads. To overcome this challenge, iDDS has provided
a fully automated platform that specifically addresses the HPO requirements in distributed
ML, ensuring the efficient execution HPO workflows with a capability to collect the results
of upstream workloads across distributed computing resources.

The workflow of iDDS for HPO involves several steps. First, iDDS centrally scans
the hyperparameter search space using advanced ML optimization algorithms, such as the
Bayesian optimization method [12], to generate hyperparameter points. These points are



Figure 3: Segmented HyperParameter Optimization

then asynchronously evaluated on remote CPU/GPU resources through PanDA. The training
results are reported back to iDDS, which further optimizes the search space and generates
a new round of hyperparameter points. This iterative process continues until the optimal
hyperparameter point and the associated trained models are obtained, marking the completion
of the iterations. In addition to HPO, iDDS also implemented an enhanced segmented HPO
method to optimize multiple ML models at the same time. This new method improves the
training efficiency and also improves the performance by reducing the bias, as shown in
Figure 3.

The HPO service provided by PanDA and iDDS offers a fully automated platform for
ML users. By utilizing geographically distributed CPU/GPU resources, it enables large-
scale application of computational power to tackle extensive HPO tasks. It is currently in
production for ATLAS ML users, for example for the FastCaloGAN analysis [13]. However,
it is important to note that the service is designed to be experiment-agnostic, its design
allowing for easy adaptation and utilization outside of ATLAS.

3.2 Monte Carlo Toy-Based Confidence Limits

Figure 4: Multiple-steps Monte Carlo Toy-based confidence limits calculations and
aggregations.

Confidence limits need to perform statistical tests or hypothesis tests to show that the
obtained results are significantly different from what could have been obtained by chance,
which typically involves computationally intensive grid scans. To minimize random grid
scanning, efficient Monte Carlo (MC) Toy-based confidence limits require multiple steps of
grid scans in different granularity, where each step results in certain phase space ranges that
need to be excluded in the analyses.

To address the requirements of multi-step workflow for confidence limits, an integrated
workflow with PanDA and iDDS has been developed, where iDDS automates the multi-step



workflow by coordinating the toy limits calculations and aggregations. As shown in Figure 4,
Points of Interest (POI) are generated based on the search space. The toy calculations are
then scheduled on distributed computing resources through PanDA. At the end of each loop,
the results are aggregated to generate new search spaces. iDDS triggers the aggregation of
results and schedules new steps in the workflow, ensuring a seamless progression.

3.3 Active Learning

Figure 5: A schematic view of the AL workflow with a H→ ZZd → 4l optimized analysis.

Active Learning (AL) [14] is an iterative parameter search technique by refining the
parameter space for the next iteration based on the previous results. ML methods are used to
efficiently guide the parameter search process, improving the overall efficiency compared to
a single-step processing approach. It can enhance the efficiency in new physics searches.

By integrating PanDA and iDDS, an automated iterative ML-assisted workflow has been
developed. In this workflow, iDDS orchestrates the processing between different steps to
enable iterative parameter search.

One AL workflow is demonstrated in a H→ ZZd → 4l optimized analysis [15], as shown
in Figure 5. This workflow includes the production chain and analysis chain. The production
chain starts with a template MC configuration, until the step to generate a corresponding
Derived AOD (DAOD) [16] sample for each physics parameter point. Once a DAOD sample
is produced, the analysis chain starts. It includes PanDA jobs which run a REANA workflow
task with a series of analysis steps in a REANA cluster [17] and PanDA jobs that run AL logic,
with Bayesian optimization to look for the maximal difference between the observed and
expected limits to identify excesses, to generate new parameter points. In this workflow, every
step is coordinated by iDDS for automation, without human intervention. This workflow has



demonstrated AL driven re-analysis for dark sector analysis. The result has been published in
the ATLAS PUB Note [15]. In addition, another ongoing AL workflow is in a generic Heavy
Higgs→WW search analysis.

4 Conclusions

The The intelligent Data Delivery Service has been developed to support emerging use cases
and is in production in ATLAS, Rubin Observatory (LSST) experiment and sPHENIX. An
integrated PanDA and iDDS service to enable distributed large-scale ML workflow is an
enabler for efficient utilization of resources and streamlined execution of ML tasks. With
enough PanDA and iDDS servers, it’s possible to process very large-scale ML tasks with
hundreds of thousands of distributed CPU cores, which allows for efficiently utilization of
distributed resources and accelerates ML training processes.

In the future we will continue to generalize these services as a contribution to the HEP
ML ecosystem, making them more widely accessible.
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