DIRAC

current, upcoming and planned capabilities and technologies

Federico

2,k

Stagni'*, Alexandre Boyer'**, Andrei Tsaregorodtsev>*™,

Andrii

Lytovchenko ™, André Sailer'", Christophe Haen'*, Christopher Burr'®, Daniela

Bauer'L, Simon Fayer3’”, Janusz Martyniak3’**, and Cédric Serfon

477

!CERN, EP Department, European Organization for Nuclear Research, Switzerland
2 Aix Marseille University, CNRS/IN2P3, CPPM, Marseille, France

3Imperial college, London, UK

“Brookhaven National Laboratory, NY, USA

Abstract. DIRAC is the interware for building and operating large scale dis-
tributed computing systems. It is adopted by multiple collaborations from vari-
ous scientific domains for implementing their computing models. DIRAC pro-
vides a framework and a rich set of ready-to-use services for Workload, Data
and Production Management tasks of small, medium and large scientific com-
munities having different computing requirements. The base functionality can
be easily extended by custom components supporting community specific work-
flows. DIRAC is at the same time an aging project, and a new DiracX project
is taking shape for replacing DIRAC in the long term. This contribution will
highlight DIRAC’s current, upcoming and planned capabilities and technolo-
gies, and how the transition to DiracX will take place. Examples include, but
are not limited to, adoption of security tokens and interactions with Identity
Provider services, integration of Clouds and High Performance Computers, in-
terface with Rucio, improved monitoring and deployment procedures.

1 Introduction

DIRAC [1] is a software framework that enables communities to interact with distributed
computing resources. It builds a layer between users and resources, hiding diversities across
computing, storage, catalog, and queuing resources. DIRAC has been adopted by several
HEP and non-HEP experiments’ communities [2], with different goals, intents, resources and
workflows: it is experiment agnostic, extensible, and flexible [3]. A single DIRAC service

*e-mail:
**e-mail:
***e-mail:
e-mail:

sekokok

Te-mail:
fe-mail:
Se-mail:
Te-mail:
le-mail:
**e-mail:
T e-mail:

federico.stagni @cern.ch
alexandre.franck.boyer @cern.ch
atsareg @in2p3.fr

lytovchenko @cppm.in2p3.fr
andre.philippe.sailer@cern.ch
christophe.denis.haen@cern.ch
christopher.burr@cern.ch
daniela.bauer @imperial.ac.uk
simon.fayer05 @imperial.ac.uk
janusz.martyniak @imperial.ac.uk
cserfon@bnl.gov

can provide a complete solution for the distributed computing of one, or multiple collabora-
tions. The Workload Management System (WMS) provides a transparent, uniform interface
for managing computing resources and complex workflows. The Data Management System
offers several tools for data handling operations. DIRAC puts special emphasis on large scale
data production and dataset management.

Under the DiracGrip umbrella we host, on GitHub!, a few interconnected software
projects, all released under the GPLvV3 license. DIRacGRID projects are publicly documented,
and host discussions on GitHub. A yearly user workshop and weekly open developers meet-
ings gather together users and experts. The project(s) consists of about six core programmers,
and a dozen contributing developers. For simplicity and historical reasons, we will often refer
to DiracGriD simply as DIRAC.

The DIRAC consortium was established in 2014 as a representing body for the devel-
opment and maintenance of the DIRACGRID software. The consortium comprises of a small
set of active members, each of which nominates a representative, while consortium members
elect every second year a Coordinator, and a Technical Coordinator. Institutes that are part of
the consortium engage in the maintenance and in the promotion of the DiracGRID software.

This paper mainly highlights new DiracGRrID capabilities and functionalities. For a more
generic description of DIRAC as a whole please refer to [4].

This paper is organized as follows: section 2 briefly explains the history and future of
DiracGrip; section 3 highlights the features of DIRAC major version v8.0; in section 4 the
writers explain the future development steps; finally, section 5 gives some final remarks.

2 Brief history and future of DiracGrip projects

DIRAC was started around the year 2002 as an LHCb [5] project for running LHCb Mon-
teCarlo productions. Originally written in bash, two years later "DIRAC2" was re-written
in PytroN [6] for interfacing with EDG (European DataGRID) [7]. Between 2006 and 2007
the code went through a full refurbishment, and the DISET [8] protocol powering DIRAC’s
services was first created. This version was dubbed "DIRAC3" [9] and, in its core structure,
is still the foundation of current DIRAC versions. In 2008 and 2009 a new large code reshuf-
fling led to DIRAC becoming open source (its code was made available under open licence
in 2009), and its first extensions were created. Further developments led to multi-VO support
and several other adaptations [10].

DIRAC is an example of a project evolving from an experiment specific to a general-
purpose one. The pilot based architecture of the WMS, first introduced by DIRAC, is now
adopted by all the LHC experiments and multiple grid infrastructures. DIRAC is also a rare
example of an efficient complex solution, with both WMS and DMS (Data Management
System) at a scale. During the 20 years of the project lifetime it received contributions from
more than a hundred developers, not including the specific extensions.

DiracGrip developers recognise that, in its current production incarnation, the project
presents a few issues: it is complex, with high entrance bar, it is somewhat cumbersome
to deploy, it is late on “standards”, it has an old-ish design, and it is not very developer-
friendly. For this and other technical reasons DIRACGRID developers started, in 2023, a new
project, dubbed DiracX?. DiracX is “the neXt DIRAC incarnation”, and some of the features
originally planned for DIRAC are currently being implemented in DiracX, and removed from
DIRAC features list. The transition between DIRAC and DiracX will be handled with care
and support will be offered to all existing DiracGrip installations.

Thttps://github.com/DIRACGrid
Zhttps://github.com/DIRACGrid/diracx

DiracX will leverage existing battle-tested off-the-shelf technologies. DiracX wants to
attract new users and developers, provide easy interoperability and standards-based inter-
faces. Stability is a must. Multi-VO support will be there from the get-go.

This paper does not enter into DiracX technical details, as some of them are still under
discussions, but gives information about which functionalities will be present in DiracX that
will not be implemented in DIRAC. It also explains, grosso modo, how we think the transition
to DiracX will look like.

3 DIRAC v8.0 release

Release v8.0 of DIRAC is a major one. We devote this section to the changes added specifi-
cally to this release.

3.1 Transition to PytHon 3 and to standard PytHon packaging

Release v8.0 of DIRAC dropped the PyTHoN 2 compatibility. The DiracGrip package stack
was based, for PytHoN 2 and up to release v7r3 (the last release that was compatible with
PyTHON 2) on the custom stack depicted in figure 1. The installation of DIRAC and its re-
lated packages was done through a custom script (dirac-install) that was taking care of
fetching the appropriate versions of the required software. Tarballs were created for every
new version and hosted on project-specific web servers. The DIRACOS package [11] was
used for collecting all packages upon which DIRAC client and server installations depended.
DIRAC release deployments relied on the environment variable $PYTHONPATH, a possible
cause of issues at specific sites. Extensions had to comply with the same way of working and
creating releases, thus adding to the complexity.

| WebAppDIRAC || RESTDIRAC || VMDIRAC || compIRAC |
4

\ ol
“Horizontal”
extensibility Pilot

Independent

Each project is
independently
versioned

A DIRAC release is composed
by all the projects (strong

For specific requirements dependency)

5 H ” — VO
Vertical v WebAppDIRAC
extensibility DIRAC

WebAppDIRAC

Community driven

Figure 1: PytHon 2 DiracGRID software stack

For PytHON 3 compatible releases, DIRacGRiD started adopting the standard pip package
manager. The PyPI® repository now hosts all DiracGRrID packages, including extensions of
DIRAC and other DIRAC-related Pytaon packages. Since Pip is only for PytHoN packages,
and DIRAC installations make use of also non-PytHon packages, PytHoN 3 releases make
use of the DIRACOS?2 installer, which in turn is based on the conda [12] binary package and
environment manager. In parallel, some extension packages have been absorbed within the

3https://pypi.org/

DIRAC code, resulting in the Pytaon 3 DiracGrID software stack shown in figure 2. A few
other packages (not depicted in figure 2) have been instead extracted from DIRAC code, for
ease of installation and sharing.

Each project is
independently

versioned WebAppDIRAC
“Horizontal” - —5
- ilo
extensibility DIRAC DIRACWebApp
Core Resources
- roject
For specific requirements DIRACOS?

Figure 2: PyTtHON 3 DIrRACGRID software stack

The developers largely modernized the code with the help of automated tools for updating
the python syntax. Support for platforms ppc64le and aarch64 (in addition to the more
common x86_64) have also been added. DIRACOS2 is at the time of writing (Q3 2023)
based on PytHon 3.11.

3.2 Tokens support

Token-based authentication and authorization has been a de-facto industry security standard
for several years now. Grid communities are pushed to migrate from X.509 certificates and
proxies [13] to tokens, defined as JSON Web Tokens (JWT) [14] to be provisioned over
OpenlD Connect (OIDC) [15] and OAuth2 [16] workflows.

Commonly used Grid technologies like computing elements HTCondorCE [17] and
ARC-CE [18] pushed versions of their software accepting tokens as well as X.509 certificates
and proxies as an authentication and authorization base technology. HTCondor version 9.0
went as far as removing support for proxies in their pre-built binaries. Bodies like EGI (Euro-
pean Grid Infrastructure) and WLCG (Worldwide LHC Computing Grid) worked in parallel
towards the adoption of such standards. Since July 2017, the WLCG Authorization WG*
has been looking into how authentication and authorization technologies used on WLCG
could evolve towards taking advantage of federated identities and standards commonly used
in industry and academia, in particular through the use of JWT [19]. This resulted in recom-
mendations and timeline documents [20].

DIRAC version v8.0 rationalizes many aspects related to authentication, authorization, to-
kens and OAuth2 support. Specifically, it adds support for new Identity Providers (IAM [21]
and EGI ChecklIn [22]), and support for submitting pilots using access tokens obtained via a
client_credentials flow from a token provider.

DIRAC will not significantly further expand the use of security tokens technologies:
works in this direction will be done within DiracX.

3.3 Monitoring with and for DIRAC

The monitoring of DIRAC is currently based on two back-ends: MySQL and ElasticSearch.
MySQL is there mostly for historical reasons, as DIRAC’s own accounting system fully re-
lies on it. ElasticSearch (and OpenSearch, as long as these two will be compatible one with

4https://twiki.cem.ch/twiki/bin/view/LCG/WLCGAuthorizationWG

rrrrrrrrrr

(a) LHCb DIRAC’s DMS operations visualized through grafana dashboard

(b) LHCb DIRAC’s WMS operations visualized through grafana dashboard

Figure 3: Grafana dashboards for monitoring DIRAC WMS and DMS operations

the other) has instead been the back-end of choice for what some time ago DIRAC devel-
opers called the monitoring system. Both of them are tightly coupled with the DIRAC web
framework, which provides a visualization and plotting interface based on Matplotlib [23].

On one side, we recognise that DIRAC’s MySQL accounting back-end is highly custom
and difficult to maintain and/or visualise (hence the DIRAC’s Web accounting application).
On the other side, adding to the existing DIRAC’s plotting capabilities is tedious and time
consuming. At present some projects (especially Grafana [24]) offer highly usable visual-
isation tools, for data stored on several back-ends. Based on these considerations, DIRAC
v8 adds to the data types monitor-able through an Elastic/OpenSearch back-end. The list
includes, but is not limited to, Pilots and Data Operations monitoring. DIRAC v8 also adds
definitions of dashboards for Kibana and Grafana.

In figure 3 we show real-life examples of using Grafana dashboards for monitoring the
LHCb DIRAC production setup.

3.4 DIRAC and Rucio

DIRAC provides, since long time, a File Catalog plugin for transparently interfacing DIRAC
Data Management with Rucio’s catalog. Synchronization agents are there to make sure that
the configuration is reflected between the two. DIRAC and Rucio are used in production
by the Belle2 collaboration, with at least two more communities looking to adopt a similar
schema. Developments in this area include support for Rucio metadata. DiracX and Rucio
plan to provide flawless communication through inter operable tokens.

4 Future releases, and the road to DiracX

DiracX is a complete rewrite of the DIRAC code, with DiracX having DIRAC as one of its
dependencies. DracX comes with a new deployment model, and a new Web application.
DiracX shares with DIRAC its databases (MySQL, Elastic/OpenSearch), making the transi-
tion from DIRAC to DiracX easy to handle. Once a DiracX service is ready, a legacy adaptor
is added to transition from DIRAC service to a DiracX one. Integration tests are already run-
ning. Communities currently using extensions of DIRAcGRID projects will need to code an
extension to DiracX, and add similar legacy adaptors to their services (if any).

Stop Stop Stop

support support support

V.3 V8.0 V8.0
D IRAC

stack

i May2022> ' i Qlioza : : Q320‘24 : H _.at'some :
’ ’ T i..point

demo WH Using DiracX serwces>
(on v9.0.0aX)

DIRAC ><
certificatiol

Figure 4: DIRAC and DiracX timeline. The two will need to co-exist for a long while.

At the time of writing the current production release of DIRAC is v8.0. We think that
DIRAC v9.0 might be the last in the series of centrally supported DIRAC releases, or, at a
minimum, the first through which a transition to DiracX will be possible. The DIRAC v9.0
release will provide several simplifications that will lead to an easier transition to DiracX.
The DracGrip Pilot will be adapted to be able to install and work also with a DiracX server.

The first of the DiracX releases (due in Q1 2024) will work together (in addition to)
DIRAC v9, and will offer partial support for WMS functionalities. It will expose REST-like
Web APIs and native tokens support. For its internal communications DiracX will issue
its own JWT tokens and will not support X.509 proxies. Communications with those Grid
resources still requiring X.509 proxies will be done through DIRAC adapter.

5 Summary and conclusions

DiracGrip components provide several functionalities (including a full-capable web portal)
that are not expanded within this paper. If readers want to know more about it, DIRAC

Being adapted
to include the
legacy adaptor

DIRAC
client

Legacy
adaptor

DIRAC’s DIPS
services

Could be
already
HTTPs

REST-like

MySQL+OpenSearch

Figure 5: DiracX services will be able to read and interact with DIRAC databases. Legacy
adaptors are already being developed to move from DIRAC to DiracX services.

developers and consortium members maintain a quite large documentation, which can be
found in the official DIRAC documentation [25]. Users workshops are held once a year,
developers meetings and hackathons are in alternating weeks. DIRAC developers hold in
high regards testing and automation, as well as using de-facto technology standards.

This paper highlighted the main news about DiracGrip developments. The DIRAC line
of developments introduced with DIRAC major release v8.0 three main pillars:

e PyTHON 3 support, and dropping of PyTHON 2 support;
o support of Identity Providers and specific usage of Tokens-based authorizations;
e expansion of monitoring capabilities.

DIRAC v8.0 ensures the possibility of fully exploiting today’s grid software stack. The
new DiracX project represents, from the technological point of view a break-point with re-
spect to what DIRAC is and has been. At the same time, from a functionalities point of view
we see it as natural successor of DIRAC. We are confident that current DIRAC users will be
DiracX users, and that new users and developers will join the efforts of DiracX.

References

[1] A. Tsaregorodtsev, F. Stagni, P. Charpentier, A. Sailer, M.U. Garcia, K.D. Ciba,
C. Haen, C. Burr, A. Lytovchenko, R. Graciani et al., Diracgrid/dirac: v8.0.27 (2023),
https://doi.org/10.5281/zenodo. 8249063

[2] F. Stagni, A. Tsaregorodtsev, L. Arrabito, A. Sailer, T. Hara, X. Zhang, Journal of
Physics: Conference Series 898, 092020 (2017)

[3] S. Camarasu-Pop et al., Exploiting GPUs on distributed infrastructures for medical
imaging applications with VIP and DIRAC, in 42nd international convention on infor-
mation and communication technology, electronics and microelectronics (MIPRO 2019)
Opatija, Croatia, May 20-24, 2019 (2019), pp. 190-195

[4] F. Stagni, A. Tsaregorodtsev, A. Sailer, C. Haen, EPJ Web Conf. 245, 03035 (2020)

[5] The LHCb Collaboration, Journal of Instrumentation 3, SO8005 (2008)

[6] A. Tsaregorodtsev, V. Garonne, J. Closier, M. Frank, C. Gaspar, E. van Herwijnen,
F. Loverre, S. Ponce, R. Graciani Diaz, D. Galli et al., eConf C 0303241, TUAT006
(2003)

[7]1 B. Segal, L. Robertson, F. Gagliardi, F. Carminati, Grid computing: the European Data
Grid Project (2000), https://cds.cern.ch/record/560415

[8] A.Casajus, R. Graciani Diaz, Journal of Physics: Conference Series 219, 042033 (2010)
[9] A. Tsaregorodtsev, M. Bargiotti, N. Brook, A.C. Ramo, G. Castellani, P. Charpentier,

C. Cioffi, J. Closier, R.G. Diaz, G. Kuznetsov et al., J. Phys.: Conf. Ser. 119, 062048
(2008)

[10] A.F. Boyer, C. Haen, F. Stagni, D.R.C. Hill, Future Gener. Comput. Syst. 133, 23 (2022)

[11] M. Petri¢, C. Haen, B. Couturier, DIRACOS: a cross platform solution for grid tools, in
EPJ Web of Conferences (EDP Sciences, 2020), Vol. 245

[12] conda-forge community, The conda-forge Project: Community-based Software Distri-
bution Built on the conda Package Format and Ecosystem (2015), https://doi.org/
10.5281/zenodo.4774217

[13] V. Welch, M. Thompson, D.E. Engert, S. Tuecke, L. Pearlman, Internet X.509 Public
Key Infrastructure (PKI) Proxy Certificate Profile, RFC 3820 (2004), https://www.
rfc-editor.org/info/rfc3820

[14] M.B. Jones, J. Bradley, N. Sakimura, JSON Web Token (JWT), RFC 7519 (2015),
https://www.rfc-editor.org/info/rfc7519

[15] OpenlD Connect, OpenlD Connect, https://openid.net/specs/
openid-connect-core-1_0.html

[16] D. Hardt, The OAuth 2.0 Authorization Framework, RFC 6749 (2012), https://www.
rfc-editor.org/info/rfc6749

[17] HTCondor Team, Htcondor (2023), https://doi.org/10.5281/zenodo.8230603

[18] Ould-Saada, Farid, Arc computing element system administrator guide (2013), https:
//doi.org/10.5281/zenodo.6809

[19] B. Bockelman, A. Ceccanti, I. Collier, L. Cornwall, T. Dack, J. Guenther, M. Lass-
nig, M. Litmaath, P. Millar, M. Sallé et al., WLCG Authorisation from X.509 to Tokens
(2020), Vol. 245, p. 03001, 2007.03602, https://cds.cern.ch/record/2751236

[20] WLCG Authorization Working Group, WLCG Token Transition Timeline (2022),
https://doi.org/10.5281/zenodo.7014668

[21] A. Ceccanti, E. Vianello, M. Caberletti, R. Miccoli, W. Furnell, F. Agostini, F. Giaco-
mini, T. Dack, M. Vilaca, indigo-iamfiam: INDIGO Identity and Access Management
Service v1.8.1pI (2023), https://doi.org/10.5281/zenodo. 8113321

[22] G. La Rocca, EGI e-infrastructure - Advanced computing services for science (2023),
https://doi.org/10.5281/zenodo.7925603

[23] J.D. Hunter, Computing in Science & Engineering 9, 90 (2007)

[24] Grafana Labs, Grafana documentation (2018), https://grafana.com/docs/

[25] DIRAC, Dirac documentation, http://dirac.readthedocs.io/

