The CMS monitoring applications for LHC Run 3

Brij Kishor Jashal', Valentin Kuznetsov?, Federica Legger®*, and Ceyhun Uzunoglu* on
behalf of the CMS Collaboration

!Cornell University, Ithaca (NY), USA

2Tata Institute of Fundamental Research, Mumbai, India
3Istituto Nazionale di Fisica Nucleare, Torino, Italy
4CERN, Geneva, Switzerland

Abstract. Data taking at the Large Hadron Collider (LHC) at CERN restarted
in 2022. The CMS experiment relies on a distributed computing infrastructure
based on WLCG (Worldwide LHC Computing Grid) to support the LHC Run 3
physics program. The CMS computing infrastructure is highly heterogeneous
and relies on a set of centrally provided services, such as distributed work-
load management and data management, and computing resources hosted at
almost 150 sites worldwide. Smooth data taking and processing requires all
computing subsystems to be fully operational, and available computing and
storage resources need to be continuously monitored. During the long shutdown
between LHC Run 2 and Run 3, the CMS monitoring infrastructure has un-
dergone major changes to increase the coverage of monitored applications and
services, while becoming more sustainable and easier to operate and maintain.
The used technologies are based on open-source solutions, either provided by
the CERN IT department through the MONIT infrastructure, or managed by
the CMS monitoring team. Monitoring applications for distributed workload
management, submission infrastructure based on HTCondor, distributed data
management, facilities have been ported from mostly custom-built applications
to use common data flow and visualization services. Data are mostly stored in
non-SQL databases and storage technologies such as ElasticSearch, VictoriaMet-
rics, Prometheus, InfluxDB and HDFS, and accessed either via programmatic
APIs, Apache Spark or Sqoop jobs, or visualized preferentially using Grafana.
Most CMS monitoring applications are deployed on Kubernetes clusters to min-
imize maintenance operations. In this contribution we present the full stack
of CMS monitoring services and show how we leveraged the use of common
technologies to cover a variety of monitoring applications and cope with the
computing challenges of LHC Run 3.

1 Introduction

After over three years of shutdown due to maintenance and upgrades, the LHC recorded
the first beams of its third physics data taking period, also known as Run 3, on July 5",
2022. The higher collision energy and luminosity will allow the CMS experiment [1] to
almost triple the dataset available for physics analysis by the end of Run 3. To store and

*e-mail: federica.legger@cern.ch

process data collected and produced by the LHC, CMS exploits a tiered distributed computing
infrastructure comprising more than one hundred computing centers around the world, the
Worldwide LHC Computing Grid (WLCG) [2]. The main components of the distributed
computing infrastructure are workload management and data management, which are handled
centrally together with access and authentication.

CMS compute nodes are provided as execution slots in a Vanilla Universe HTCondor
pool [3] and provisioned through GlideinWMS [4]. Job submission to the HTCondor pool is
done through specific tools. WMAgent is used for central data processing and Monte Carlo
production jobs, and CRAB for user jobs [5]. The data management system includes several
components. The data transfer and location services are handled by Rucio [6]. DBS [7] is the
Data Bookkeeping Service, a metadata catalog. DAS [8], the Data Aggregation Service, is
designed to aggregate views and provide them to users and services. Data from these services
are available to CMS collaborators through a web suite of applications known as CMSWEB.

To keep watch on such a complex collection of computing services and tools, CMS
has developed over the three years of LHC shutdown a comprehensive suite of monitoring
applications. Predefined views allow operators to check the status of the computing systems in
real time. Automatic alerts are setup to help operation teams to spot possible issues. Detailed
information are available to debug problems. In addition we provide historical views that
allow to monitor the system performance over time, for example accounting of storage and
data access patterns, usage of computing resources (walltime, memory, CPU).

2 Design of the CMS monitoring services

The CMS monitoring infrastructure acts as a data sink of metrics produced by the various
CMS computing systems. The CMS monitoring group is responsible for storing, aggregating
and visualising the injected data. Monitoring services have been designed with the idea
that they should be easy to use for CMS colleagues, quick to implement and extend for
developers, and should need low effort to operate and maintain. To achieve this, we strive to
streamline the technologies we use, favouring the adoption of standards and well-supported
open-source products. The number of custom applications is kept to a minimum and used to
satisfy requirements of specific use cases, which can not be accommodated with the standard
infrastructure.

2.1 Data injection

We extensively leverage MONIT [9], the SaaS (Software as a Service) infrastructure provided
by the CERN IT department, for data injection, storage, and access. Data is injected in JSON
format [10] into MONIT either through ActiveMQ [1] messages or an HTTP endpoint for
data providers inside the CERN network boundaries. We provide a Python library for message
broker communication to help CMS data providers and to standardise data injection. Logs
may be sent also through Logstash [12]. Data are stored in MONIT in OpenSearch [13] and
HDFS [14]. OpenSearch is used for short term storage of metrics that need to be accessed for
real time monitoring of the computing systems. Detailed information for debugging purposes
is also available with a lifetime between one and three months according to the data volume.
A reduced set of aggregated metrics is also stored in OpenSearch to provide historical views
of system performances. HDFS is used to store raw metrics for longer time periods (one to
several years). They can be used for accounting purposes, in-depth studies, and data mining.

2.2 Data access

Data in OpenSearch can be visualised in either Kibana [15] or Grafana [16]. Grafana is
the tool of choice for official CMS dashboards, while Kibana is mostly used for quick data
exploration. Data in HDFS are accessed through Apache Spark [17] and the SWAN [18]
service at CERN. Overall, we support metrics that can come as unstructured, structured,
time-series and static data. Access to Grafana data sources can also happen through a Grafana
proxy. We developed a set of Command Line Interface (CLI) tools to ease and standardise
access for CMS users through the proxy, to manage alerts through queries in either JSON or
InfluxQL [19] formats, and to handle annotations on any CMS Grafana dashboard based on
its tags. All tools are implemented in Go and are publicly available on CVMFS [20] in the
Jevmfs/cms.cern.ch/cmsmonit area which is available on all grid sites.

The MONIT ecosystem is used by several CMS computing subsystems, such as HTCondor
job monitoring data, CMSWEB user activities, metrics about analysis and Monte Carlo (MC)
production workflows coming from the WMAgent and CRAB job submission tools. On
average, CMS producers send more than 4.5 million messages per hour to the ActiveMQ
brokers, with rates close to 6.5 KHz. The total size of CMS data stored in OpenSearch is
more than 30 TB, with a daily index average of around 30 GB. In HDFS we collected 45 TB
of compressed data over the last five years, mostly stored in JSON format which allows to
achieve a 90% compression level. Grafana is the official visualization tool, and we currently
manage more than one hundred production dashboards, and a total of more than five hundred.

2.3 The CMS monitoring services

To complement services provided by MONIT, CMS developed its own infrastructure to
cover additional monitoring needs. Individual CMS services and nodes are monitored via
Prometheus [2 1] with VictoriaMetrics [22] as a backend. AlertManager [23] is a powerful tool
to handle alerts based on Prometheus metrics. All alerts from AlertManager are visualised
in karma dashboards [24]. Prometheus, VictoriaMetrics and AlertManager are not provided
by MONIT, therefore we manage and operate them in Kubernetes (see Section 3). A detailed
description of CMS monitoring applications and services not covered by MONIT can be found
in [25].

Heavily populated CMS database, such as those holding DBS or Rucio data, can not
be accessed directly by monitoring applications for performance reasons. Daily snapshots
are created by a set of Apache Sqoop [26] jobs and stored in HDFS. Several ETL (Extract,
Transform, Load) pipelines have been developed to produce aggregated information which
require processing metrics over a large period of time (spanning several months or years).
Examples of such workflows include the production of popularity datasets by combining
data from several sources (DBS, Rucio, EOS [27] and XRootD [28] data access logs) and a
comprehensive set of Rucio dataset monitoring applications (see Section 4). We developed
and maintain CMSSpark [29], a common framework to transparently access CMS datasets on
HDFS using Spark clusters.

3 The Kubernetes infrastructure

Kubernetes [30] allows us to deploy and scale services with minimal operational and mainte-
nance effort. Over the years we gradually migrated most of our services to the Kubernetes
infrastructure. The current architecture includes eight clusters (also shown in Fig. 1):

e MAIN: the main CMS monitoring cluster;

e HA-1 and HA-2: two High-Availability (HA) clusters for critical services;

o NATS: a cluster for NATS (Neural Autonomic Transport System) services [31]. NATS is a
messaging-oriented middleware service that provides an alternative solution for for message
broker and may be used for real-time monitoring of services;

e CRONS: a cluster for ETL batch pipelines (Spark and Sqoop based jobs). Each pipeline runs
on a schedule that may be hourly, daily or monthly. To ensure a fair resource usage among
all pipelines which may be CPU and memory hungry, jobs need to be properly orchestrated;

e VM-AGG: two instances of VictoriaMetrics for long-term time-series metrics storage for
aggregated data;

e DM-MONIT: hosts services dedicated to the data management monitoring described in
Section 4;

o TEST: a cluster for testing purposes.

@[cus monitoring]

pushgateway @ [cms-nats]
exporlers
Q o NATS

E(V)? . PSRN PR ITE]B

]
1
‘FAL.'IH = o- @ [cms-momionng-agg)
1
[R VM-AGG
@ [cms-mouitoring-hat] !
[
-l

s g ate way . >
| kunu y |
HA-1 : MAIN
V 3 il @ [cns-dm-monstonag]
|:(,., S P DM-MONIT

f L
: (oo]

s H .
@ (cms monitoring-ha2) B B

. | pushpateway | -/ °
Exporters |-F |ems-test]
@ - @ (cins-monitoring-cron]
- ; T
N]ﬂrma ¢ ‘ CRONS EST
e

T

(%]

©

-
-
-

<XZTORV
R

©

Figure 1. The Kubernetes cluster architecture.

To minimise downtimes, the most critical services (Prometheus, VictoriaMetrics, and
AlertManager) are deployed in HA mode, exploiting three clusters (MAIN, HA-1, and HA-
2) allocated in different zones in the CERN network. The MAIN cluster runs non-critical
services such as the NATS subscribers which listen to various real-time messaging channels
from the NATS server, the HTTP exporters used to monitor the status of our services, and a
Prometheus Promxy proxy server [32]. The Promxy server is used to access services on both
HA-1 and HA-2. Each HA cluster runs independent instances of Prometheus, AlertManager
and VictoriaMetrics. The Prometheus server scrapes metrics from a set of CMS services
and stores them in the VictoriaMetrics backend. Prometheus is configured to access both
AlertManager instances, which can exchange information through a gossip-based mechanism
if necessary. The HTTP exporters are also deployed in both HA clusters. In case of outages in
HA-1 or HA-2, the Prometheus Promxy server is able to repopulate metrics from the other

one. VictoriaMetrics is used as long-term metric and remote-write storage for our Prometheus
instances, as well as for more than ten external Prometheus instances hosted by other CMS
groups.

The Prometheus service currently covers more than one hundred computing nodes and
more than twenty Kubernetes clusters running hundreds of services overall. We support more
than one hundred exporters (mostly written in GoLang and Python), scraping more than three
thousand metrics. Since these metrics come from different services in various domains and
infrastructures, we access them in pull mode only. AlertManager handles more than 150 alert
records and rules. In VictoriaMetrics we store around 500 billion data points with a data
retention policy of thirty days. The MAIN cluster fits into two nodes with 16 CPU cores and
30 GB RAM, each HA cluster has one node with 16 CPU cores and 30 GB of RAM and one
node with 8 CPU cores and 16 GB of RAM. This architecture is fault-tolerant (no downtimes
in three years of operation) and easy to maintain via the Kubernetes deployment procedure.
Thousands of metrics scraped by the HTTP exporters are exposed as a single Grafana data
source through the Prometheus Promxy server.

4 Dataset monitoring

Monitoring of CMS distributed storage is paramount to ensure efficient use of disk and tape
resources allocated to the experiment. Information about stored datasets and their usage can
be obtained by combining two data sources: Rucio and DBS. Rucio is the distributed data
management of choice for official CMS data, and contains information about dataset names,
list of files belonging to each dataset, size, creation date, last access date, policy on the number
of copies to keep on different types of storage (tape or disk). Dataset metadata, such as data tier,
production campaign, and acquisition era, are stored in DBS. To summarise, DBS knows about
each dataset content, whereas Rucio knows its location. A complete monitoring application
must integrate information from both data sources. As additional challenge, such application
can not directly query the production Rucio and DBS databases, for performance reasons.
Custom ETL pipelines were developed to cover this use case. Relevant database tables are
extracted on a daily basis, metrics of interest are aggregated, and displayed in a variety of
views. A detailed description of the data flows and used technologies can be found in [33].
We currently support three data pipelines (also shown in Fig. 2) to cover various needs:

e not accessed datasets: views of least popular datasets based on the last access date metrics;

e tabular dataset monitoring: tables summarising for each dataset the content, size, creation
and last access dates, and location on the CMS Rucio Storage Elements (RSEs);

e time-serie dataset monitoring: time evolution of usage of all CMS RSEs.

The first part of the data flow, namely the extraction and aggregation from the Rucio and
DBS databases, is common to the three pipelines. Sqoop jobs are used to create the daily DB
snapshots that are stored in HDFS. The Sqoop jobs are optimised and executed in parallel,
query about ten DB tables, and typically last less than thirty minutes. Snapshots in HDFS are
processed by Spark jobs that aggregate metrics of interest for each specific use case. Each
Spark job consists of more than twenty join operations between Spark datasets and tens of
aggregations to reach the final data schema.

Storage and access of the final results vary according to the size of the data and visualisation
type. Data for the not accessed datasets are stored in EOS and CERNBox [34], and visualised
with Grafana and DataTables [35] respectively. Data for the tabular dataset monitoring are
injected in a stand-alone MongoDB [36] instance that serves as a storage to a web service
backed by Go and JQuery DataTables stack. The DataTables web page provides advanced

1. Not accessed datasets

5Grafana @pataTables
* @«

2
L X ED CERNBox

Rumo

&] 2. Tabular dataset monitoring

[> hEdEpr [>SPQ§|:> . mongoDB E:>'°DataTab|es

3. Time-serie dataset
monitoring

& 2 A¢niveman) <y OpenSearch

5 Grafana

Figure 2. The three ETL pipelines for dataset monitoring: not accessed datasets (1), tabular dataset
monitoring (2), and time-serie dataset monitoring (3).

search capabilities over more than 600 thousand dataset entries and close to 6 million RSE
replica entries. Time-serie data are injected in OpenSearch through the standard AMQ broker,
and visualised with Grafana.

5 Summary

We presented an overview of the current CMS monitoring infrastructure and recent develop-
ments, the Kubernetes cluster architecture and the dataset monitoring applications. Services
provided by MONIT are complemented with additional applications deployed on Kubernetes
clusters which provide better scalability and reduction in operational costs. Such architecture
satisfies CMS requirements for monitoring in the challenging environment of LHC Run 3.

We adopted common data formats for metrics and visualisation tools, while keeping
the flexibility of using different solutions for specific use cases. A common monitoring
infrastructure for CMS applications and the choice of open-source technologies have several
advantages: increased portability, lower maintenance costs, and the possibility to share
knowledge and developments among several CMS groups. We continuosly develop and add
services to the current infrastructure, to improve the CMS user experience of monitoring
solutions, and to cope with future challenges at the LHC due to higher data rates.

References

[1] CMS Collaboration, JINST 3 (2008) S08004

[2] I. Bird et al., CERN-LHCC-2014-014 (2014), LCG-TDR-002

[3] D. Thain, T. Tannenbaum, and M. Livny, Concurrency and Computation: Practice and
Experience, Vol. 17, No. 2-4, (2005) 323-356

[4] 1. Sfiligoi et al., proceedings of the WRI World Congress on Computer Science and
Information Engineering, Vol. 2, (2009) 2428-432

[5] T. Ivanov et al, EPJ Web Conf, (2019) 03006

[6] Barisits, M., Beermann, T., Berghaus, F. et al. Comput Softw Big Sci (2019) 3: 11

[7]1 V. Kuznetsov et al. J. Phys.: Conf. Ser. 219 (2010) 042043

[8] M. Giffels, Y. Guo, V. Kuznetsov, N. Magini and T. Wildish, J. Phys.: Conf. Ser., Vol. 513,
Issue 4 (2014)

[9] A. Aimar, et al., J. Phys.: Conf. Ser. 898 (2017) 092033

[10] JSON (JavaScript Object Notation), https://www.json.org (2023), accessed: 2023-08-18

[11] Apache ActiveMQ, http://activemq.apache.org (2023), accessed: 2023-08-18

[12] Logstash, https://www.elastic.co/logstash (2023), accessed: 2023-08-18

[13] OpenSearch, https://opensearch.org/ (2023), accessed: 2023-08-18

[14] Apache Hadoop, http://hadoop.apache.org (2023), accessed: 2023-08-18

[15] Kibana, https://www.elastic.co/products/kibana (2023), accessed: 2023-08-18

[16] Grafana, http://grafana.org (2023), accessed: 2023-08-18

[17] Apache Spark, http://spark.apache.org (2023), accessed: 2023-08-18

[18] D. Piparo, et al., Future Gener. Comput. Syst. 78 (2018) 1071-1078

[19] Influx Query Language, htips://docs.influxdata.com/influxdb/v1.8/query_language/
(2023), accessed: 2023-08-18

[20] P. Buncic, et al., J. Phys. Conf. Ser., 219 (2010) 042003

[21] Prometheus, https://prometheus.io/ (2023), accessed: 2023-08-18

[22] VictoriaMetrics, https://victoriametrics.com/ (2023), accessed: 2023-08-18

[23] Prometheus AlertManager https://prometheus.io/docs/alerting/alertmanager/ (2023), ac-
cessed: 2023-08-18

[24] karma, Alert dashboard for Prometheus Alertmanager https://karma-dashboard.io/
(2023), accessed: 2023-11-18

[25] C. Ariza-Porras, V. Kuznetsov, F. Legger, Comput Softw Big Sci (2021) 5:5

[26] Apache Sqoop, https://sqoop.apache.org/ (2023), accessed: 2023-08-18

[27] A.J. Peters, et al., J. Phys.: Conf. Ser. (2015) 664 042042

[28] XRootD project page http://www.xrootd.org/ (2023), accessed: 2023-08-18

[29] CMSSpark framework, https://github.com/dmwm/CMSSpark (2023), accessed: 2023-08-
18

[30] Kubernetes, https://kubernetes.io/ (2023), accessed: 2023-08-18

[31] NATS https://nats.io/ (2023), accessed: 2023-08-18

[32] Prometheus proxy, https://github.com/jacksontj/promxy (2023), accessed: 2023-08-18

[33] C. Uzunoglu, CERN note CMS-CR-2023-034 (2023)

[34] H. Gonzélez Labradoret et al., EPJ Web Conf. 214 (2019) 04038

[35] DataTables, https://datatables.net (2023), accessed: 2023-08-18

[36] R. Guo, Commun. ACM 60, 5 (2017) 43-47

https://www.json.org
http://activemq.apache.org
https://www.elastic.co/logstash
https://opensearch.org/
http://hadoop.apache.org
https://www.elastic.co/products/kibana
http://grafana.org
http://spark.apache.org
https://docs.influxdata.com/influxdb/v1.8/query_language/
https://prometheus.io/
https://victoriametrics.com/
https://prometheus.io/docs/alerting/alertmanager/
https://karma-dashboard.io/
https://sqoop.apache.org/
http://www.xrootd.org/
https://github.com/dmwm/CMSSpark
https://kubernetes.io/
https://nats.io/
https://github.com/jacksontj/promxy
https://datatables.net

	Introduction
	Design of the CMS monitoring services
	Data injection
	Data access
	The CMS monitoring services

	The Kubernetes infrastructure
	Dataset monitoring
	Summary

