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Abstract. Particle tracking is among the most sophisticated and complex part
of the full event reconstruction chain. A number of reconstruction algorithms
work in a sequence to build these trajectories from detector hits. Each of these
algorithms use many configuration parameters that need to be fine-tuned to
properly account for the detector/experimental setup, the available CPU bud-
get and the desired physics performance. Few examples of such parameters
include the cut values limiting the search space of the algorithm, the approx-
imations accounting for complex phenomena or the parameters controlling al-
gorithm performance. The most popular method to tune these parameters is
hand-tuning using brute-force techniques. These techniques can be inefficient
and raise issues for the long-term maintainability of such algorithms. The open-
source track reconstruction software framework known as “A Common Track-
ing Framework (ACTS)” offers an alternative solution to these parameter tun-
ing techniques through the use of automatic parameter optimization algorithms.
ACTS come equipped with an auto-tuning suite that provides necessary setup
for performing optimization of input parameters belonging to track reconstruc-
tion algorithms. The user can choose the tunable parameters in a flexible way
and define a cost/benefit function for optimizing the full reconstruction chain.
The fast execution speed of ACTS allows the user to run several iterations of
optimization within a reasonable time bracket. The performance of these opti-
mizers has been demonstrated on different track reconstruction algorithms such
as trajectory seed reconstruction and selection, particle vertex reconstruction
and generation of simplified material map, and on different detector geometries
such as Generic Detector and Open Data Detector (ODD). We aim to bring this
approach to all aspects of trajectory reconstruction by having a more flexible
integration of tunable parameters within ACTS.

1 Introduction

The reconstruction of trajectories for charged particles is a computationally demanding yet
vital aspect of any high-energy physics experiment. The computational overload multiplies
quadratically with the number of particles in the detector. Future progress demands dedi-
cated efforts to enhance algorithmic performance while managing computational overhead.
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A viable avenue for such an enhancement involves optimizing algorithmic parameters that
span from particle properties preselection to simplifying detector effects and limiting search
spaces. However, the sheer number of such optimizable parameters, and their dependence
on the specific detector configurations and experimental circumstances requires a significant
amount of work and regular updates.

This paper puts forth the proposal to utilize the auto-tuning methodologies for the opti-
mization of parameters within different tracking algorithms. The effectiveness of these tech-
niques has been demonstrated through the development of the simplified material models for
detectors (known as material mapping) and the optimization of parameters in track seeding
and primary vertex reconstruction algorithms. These methodologies offer the potential to
identify an optimal parameter set based on the prevailing experimental conditions, all while
minimizing human intervention.

2 ACTS and dataset
A Common Tracking Software (ACTS) [1] is a tracking framework being developed since
2016 as an international collaboration with the goal of providing a generic, experiment-
independent open-source software framework for charged particle tracks reconstruction.
To facilitate comprehensive research, ACTS offers two simulated detector geometries: the
Generic Detector as shown in figure 1 is a standard all-silicon LHC-type tracking detector
used in the TrackML [2] challenge and the Open Data Detector (ODD) [3], an evolved ver-
sion of Generic Detector implemented using DD4Hep [4] that provides the support structure
and the material akin to a real detector. The Generic detector has been used for the seeding
and vertexing optimization studies while ODD has been used for the material mapping stud-
ies in this paper. The adaptability of ACTS to various detector geometries positions it as an
ideal platform for researching and testing auto-tuning techniques with different algorithmic
configurations.

In order to perform the optimization studies, tt̄ events generated and simulated within the
ACTS framework are used. These events correspond to the proton-proton (pp) collisions at
a center-of-mass energy

√
s = 14 TeV with an additional pile-up (additional pp interactions

within the same bunch-crossing) of 200, emulating the High Luminosity LHC conditions.
The events are generated using Pythia8 [5] and only particles with a transverse momentum
pT > 1 GeV have been considered for current studies.

Figure 1. Layout of ACTS Generic Detector. The Open Data Detector share similar layout but have
more realistic interaction material.



3 Parameter Optimization in ACTS

The automatic parameter optimization techniques featured in this paper have been integrated
into the ACTS library. These techniques are now accessible for utilization with various de-
tector geometries and tracking algorithms by a broad community of users.

3.1 Optimization Framework

Due to the difficulty of finding the derivatives of the tracking algorithms, this work explores
derivation-free optimization techniques. The objective is to discover the optimal configura-
tion that yields the best performance. To achieve this, a scoring function is formulated, draw-
ing from various performance metrics of the tracking algorithm, such as efficiency and fake
rate. To perform the optimization, the ACTS tracking framework is integrated with parame-
ter tuning framework as presented in figure 2. The tuning framework initiates the process by
providing a random input parameter configuration to the tracking framework. Subsequently,
the tracking framework assesses its performance based on this configuration and reports the
score back to the tuning framework. The tuning framework strives to maximize this score,
and consequently, the algorithm’s performance. It employs parameter estimation techniques
to generate another set of parameters, which are then passed to the tracking algorithm. This
iterative process continues for a number of iterations until a satisfactory score and parameter
configuration are achieved.

Figure 2. Integration of ACTS tracking framework with parameter tuning framework.

This study explores two distinct optimization frameworks: Oríon [6], an asynchronous
framework for black-box function optimization, and Optuna [7], an open source software for
automatic hyperparameter search. Both of these algorithms can be easily implemented and
integrated within ACTS, making it convenient to use them for the optimization of different
algorithms. Within the Oríon framework, a random search algorithm has been implemented
that randomly samples the parameter configurations from the parameter space and provides an
optimal configuration for a large enough number of trails. Meanwhile, in the Optuna frame-
work, The Tree-structured Parzen Estimator (TPE) [8] algorithm has been utilized. TPE is
a Bayesian optimization method that determines parameter configurations based on a proba-
bilistic model.



3.2 Implementing optimization in different ACTS algorithms

3.2.1 Material Mapping

In a real detector, as particles traverse the detector material, they undergo deviations from
their initial trajectory due to the interactions with matter. These interactions hold substantial
importance in determining the paths of these particles and needs to be taken into account
properly when reconstructing the trajectory of the particles. To effectively incorporate the
trajectory changes resulting from the material interactions in a virtual detector, a high de-
gree of precision is essential in determining the quantity of material at each point within the
detector.

Conventional detector simulation frameworks such as Geant4 [9] excel in accurately sim-
ulating detector materials. However, they demand significant memory resources, and incor-
porating them into the track reconstruction process would significantly impede the speed of
execution. An approximation can be achieved by creating a simplified material map, where
all the material is projected onto a predefined set of surfaces within the detector. Each surface
is divided into two-dimensional bins, and the material within each bin is averaged. The pro-
cess is visualized in Figure 3(a) that provides an illustration of the material mapping on one
such surface. As a particle track crosses one of these surfaces, we can identify the specific
bin it intersects and compute the energy loss due to interaction by determining the material
content stored in that bin. The success of this approach depends significantly on the careful
selection of specific surfaces and the choice of suitable bin sizes for each surface. Opting
for coarse bins can result in the loss of crucial geometric information, leading to biased re-
constructions. Conversely, opting for excessively fine bins will inflate memory consumption.
Therefore, it is essential to optimize these parameters to create an efficient material map.

We have used automatic optimization algorithm called Oríon to optimize the bin size of
the surfaces used in the material map. The set of surfaces is provided to the algorithm and the
algorithm finds the optimal binning automatically. For this test, we have used a total of 107
surfaces, that leads to a total of 214 parameters. The algorithm uses a random search approach
to find the best parameters while trying to minimize a score function (defined in equation(1))
which is based on the quality of the map. The bins in the score function refers to the number
of bins in a surface while variance refers to the variance of all the material projected onto a
given bin. The algorithm tries to minimize the score which in turn minimizes the variance
and keeps the number of bins as small as possible. We were able to achieve optimal results on
40 CPU cores after one day of running. The resultant material map showed a good agreement
with the map generated by the Geant4 as shown in Figure 3(b).

Score =
1

bins
×
∑
bin

variancebin × (1 +
√

bins) (1)

3.2.2 Track Seeding

Reconstructing particle tracks from the detector hits is a complex challenge due to the sub-
stantial combinatorial nature of the problem when numerous hits are present in the detector.
Therefore, most of the track reconstruction algorithms start with an initial step called the
“Track Seeding”. During this phase, small tracklets, known as track seeds, are formed using
only the initial few detector layers (usually three or more) and a helicoidal fit is performed on
these tracklets to get a coarse estimate of the corresponding track parameters. Subsequently,
these tracklets serve as the input for the complete track-finding process.



Figure 3. (a) Projection of the material onto bins (arrows) of different sizes. (b) Comparison between
the material encountered in a Geant4 simulation vs. the auto-tuned material map in the the open data
detector.

The track seeding algorithm uses a set of user-defined parameters to select hits for seed
reconstruction and these parameters can differ significantly depending on the detector geom-
etry and other experimental conditions. Finding the optimal parameter configuration for a
given geometry is critical for efficient seed reconstruction, as the failure to reconstruct a seed
corresponding to a truth particle can result in the permanent loss of that particle, significantly
affecting tracking performance. On the other hand, too many seeds per truth particle can slow
down the track reconstruction process.

The manual evaluation of these parameters can be a tedious task, so to streamline this
process, we have employed auto-tuning techniques, utilizing two distinct optimization algo-
rithms: Optuna and Oríon. In this study, we have focused on optimizing eight seeding param-
eters while assessing the performance using three crucial metrics: the efficiency (the fraction
of particles accurately reconstructed as tracks), the fake rate (the fraction of reconstructed
tracks not corresponding to any particle) and the duplicate rate (the fraction of reconstructed
tracks that duplicate previously reconstructed ones). The first two metrics directly impact the
physics performance, while the third metric impact the speed of reconstruction. A scoring
function based on these metrics was constructed to guide our optimization efforts:

Score = Efficiency − (FakeRate +
DuplicateRate

K
+

RunTime
K

) (2)

The optimization algorithms try to maximize the score while trying to achieve a better per-
forming parameter configuration. Remarkably, both Optuna and Oríon efficiently converged
to optimal parameter configurations within one hour of running. Figure 4 illustrates a compar-
ison of efficiency and duplicate rates before and after optimization. The results demonstrate
a notable enhancement compared to an un-optimized configuration in both cases.

3.2.3 Vertexing

In collider experiments, when two beams collide, numerous interactions can occur simul-
taneously. The interaction characterized by the highest momentum exchange is known as
the “hard interaction”, while all others are categorized as the “pile-up interactions”. The
collision points where these interactions occur are denoted as primary and pile-up vertices,
respectively. To differentiate between tracks originating from the primary and pile-up ver-
tices, the tracks are associated with their corresponding vertices using a vertex reconstruction
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Figure 4. Comparison of track reconstruction efficiency and duplicate rate before and after parameter
optimization. The track reconstruction efficiency as a function of transverse momentum and pseudo-
rapidity is shown in top-left and top-right figures while the corresponding distributions for duplicate
rate are shown in two bottom figures. The low statistics in high PT regions results in large error-bars.

algorithm. Within the ACTS framework, we employ an algorithm known as the Adaptive
Multi-Vertex Finder (AMVF) [10] for this purpose. The AMVF algorithm concurrently fits
multiple tracks to various vertices, assigning different weights to each track-vertex pairing.
Subsequently, it optimally fits all the vertices and assigns each track to its respective vertex.

Similar to the track seeding algorithm, the performance of the vertexing algorithm relies
on several user-defined parameters that exhibit significant variation depending on the detector
geometry and other experimental conditions. To enhance the algorithm’s performance, we
have employed both Optuna and Oríon to obtain optimized parameter configurations. For
this study, we have chosen five vertexing parameters for optimization. The following score
function has been constructed based on a number of performance metrics:

Score = (EffTotal + 2EffCleaned) − (Merged+Split+Fake+Resolution) (3)

where EffTotal is the fraction of reconstructed truth vertices, EffCleaned is the fraction of re-
constructed truth vertices such that each reconstructed vertex is associated to only one truth
vertex, Merged is the fraction of reconstructed vertices associated with multiple truth ver-
tices, Split is the fraction of reconstructed vertices such that multiple vertices are associated
with the same truth vertex, Fake is the fraction of reconstructed vertices not associated to any
truth vertex and Resolution is reconstructed vertex resolution in x, y and z.

Our objective for the vertexing algorithm is to maximize the reconstruction of clean ver-
tices while maintaining a high overall efficiency. To attain this objective, our optimization
algorithms strive to maximize the score, typically converging to an optimal configuration



within approximately four hours of runtime. The resulting number of clean and fake vertices
is shown as a function of the pile-up in Figure 5. Notably, substantial improvements in the
number of clean vertices are evident, particularly in high pile-up scenarios, when compared
to the un-optimized configuration. Likewise, a reduction in the number of fake vertices is
also observed.
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Figure 5. Comparison of the number of reconstructed vertices as a function of pile-up. The left plot
shows the number of clean vertices while right plot shows the number of fake vertices.

4 Conclusion

Our research demonstrates the effective application of data-driven auto-tuning algorithms
within the realm of track reconstruction. We have successfully optimized input parameters
for various algorithms, including seed reconstruction, vertex reconstruction, and material
mapping. These methods have been seamlessly integrated into the ACTS framework, mak-
ing them readily available for adoption by any experiment utilizing ACTS for their tracking
requirements.

Looking ahead, our ongoing efforts will be directed toward further generalizing this ap-
proach. We aim to extend the scope of automatic parameter tuning to encompass a broader
range of algorithms within the ACTS framework, simplifying the optimization process for a
wider array of tracking tasks.
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