
EIC Software Overview

David Lawrence1,∗

on behalf of the ePIC Collaboration
1Thomas Jefferson National Accelerator Facility

Abstract. Development of the EIC project detector "ePIC" is now well un-
derway and this includes the "single software stack" used for simulation and
reconstruction. The stack combines several non-experiment-specific packages
including ACTS, DD4hep, JANA2, and PODIO. The software stack aims to be
forward looking in the era of AI/ML and heterogeneous hardware. A formal
decision making process was implemented to choose the components that in-
volved everyone in the collaboration that was interested. This talk will present
an overview of the software stack currently used for development of the ePIC
detector and on which we expect to execute the experiment.

1 Introduction

The ePIC detector is currently under development as the first detector of the new Electron Ion
Collider (EIC) facility being constructed at Brookhaven National Laboratory(BNL). BNL and
Jefferson Lab will be the host laboratories for the EIC Experimental Program. The detector is
designed to measure energetic collisions of electrons and ions (including protons) with center
of mass energies in the range of 20GeV - 140GeV and luminosities up to 1034cm−2s−1[1].
Figure 1 shows a diagram of the basic design of the central detector. The full, integrated
detector, including the far forward and far backward detector regions, is shown in figure 2.
With several subsystems the detector is expected to produce data at rates of O(100)Gbps
out of the counting house[2]. Software is a critical component for integrating simulation,
reconstruction, and analysis, all of which are required to complete and understand the detector
design details and to execute the experiment when it begins data taking in the early 2030’s.
Choosing the components of the software stack has been done to ensure long term support,
utilization of modern technologies, and flexibility to incorporate new technologies in the near
future.

The ePIC software stack relies primarily on the C++ and Python programming languages.
Currently, the C++17 standard is used and compilation assured using the gcc compiler family.
A transition to the C++20 standard is expected soon with plans to follow new standards
throughout the lifetime of the experiment as warranted. Support of older C++ standards will
be phased out with details of the exact policy for doing so yet to be determined. Table 1 lists
the core packages comprising the ePIC software stack, some of which are highlighted in later
sections.

∗e-mail: davidl@jlab.org

Figure 1. Profile view of the ePIC central detector at its present design stage. Far forward and far
backward detectors near the beam lines are not shown.

Core packages in ePIC Software Stack
PACKAGE FUNCTION

geant4

(commonly use core packages)
python
boost
root
fmt loggingspdlog

JANA2 reconstruction framework
PODIO

data model + I/OEDM4hep
EDM4eic
DD4hep geometry
ACTS[3] tracking

Table 1. Core pieces of the ePIC software stack for simulation, reconstruction, and analysis

2 Design Philosophy

Early in the decision making process of selecting the components of what would become the
ePIC software stack, the EIC community developed a Software Statement of Principles[4].
The purpose was to provide a reference which could be used to help guide the decision mak-
ing process. This proved to be very useful in framing discussions around specific packages
and helped expedite the selection process. The software principles guided the definition of
requirements for various parts of the software stack and informed decisions based on those
requirements. An important theme contained in the Software Statement of Principles was
modularity. This is considered critical for a software stack that will be used for the next 20
years. The goal of a modular software stack is to allow for new components and technologies
to be adopted as they arise without having to redevelop other components. Modularity is im-
plemented at multiple levels within the stack, The following diagram illustrates the top-level.

/ 13

EDM4eic data model based on EDM4hep and podio.
Geometry Description and Detector Interface using DD4hep.

MC Event
Generators

Detector
Simulations in

Geant4

Readout
Simulation

(Digitization)

Reconstruction
in JANA2

Physics
Analyses

Modular Simulation, Reconstruction, and Analysis Toolkit using tools from the NP-HEP community

Continuous Integration for Detector and Physics Benchmarks and Reproducibility

3 Containerization and CI

The computing plan for ePIC anticipates utilizing varied distributed compute resources in-
cluding the Open Science Grid (OSG)[5][6], the SDCC at BNL, and the SciComp farm
at JLab. The OSG alone includes a wide variety of operating systems so to impose uni-
formity, containerization is used. Singularity/Apptainer is supported in most of the avail-
able compute resources and so is the preferred system used by ePIC. Docker images for
Intel and ARM architectures are also available for users running on local non-Linux re-
sources such as Windows and MacOS. Singularity images are distributed via cvmfs (see
/cvmfs/singularity.opensciencegrid.org/eicweb). They contain not only binaries of all of the
packages in the software stack, but a C++ compiler, Python interpreter, and the development
tools (e.g. cmake, git, etc...) needed to develop software for ePIC. The containers are thus
the primary tool for development and production. They are also used for the Continuous
Integration (CI) system used to ensure software entering the repositories passes a series of
integration tests before being merged into the main branch. Linux users are typically able
to retrieve a container and run the software locally on their laptop or PC with a small set of
commands (e.g. curl - -location https://get.epic-eic.org | bash).

The CI system uses GitHub runners to automatically run a series of integration and other
tests periodically and upon every Pull Request (PR). On GitHub, we use a cvmfs and sin-
gularity action to load the environment for each job step (using caching for minimal over-
head). After an initial set of compilation checks and unit tests, GitHub triggers more exten-
sive benchmark suites on a self-hosted GitLab instance at Argonne National Lab, where 256
cores stand ready to run longer simulations of multiple detector configurations and reference
physics processes. Completed benchmarks are reported back to the PRs on GitHub, where
they can be consulted for review.

4 The ePIC Software Stack

4.1 Detector Geometry

For the detector geometry definition and exchange the DD4hep package[7] was chosen. This
uses an XML format to specify the geometry that can be used for both the simulation (via
GEANT4) and the reconstruction. The schema includes support for specifying a readout
type for each detector that a generic GEANT4 program called ddsim can use to identify
a C++ plugin to implement the readout for the detector. For the purposes of the EIC, an
augmented version of this program called npsim[8] is used which allows tuning the physics
as well as additional levels of customization over the generic ddsim. Both npsim and ddsim
are distributed in the container images. The geometry is organized in a set of directories
containing the files for a particular group of detectors while the files themselves correspond
to specific detectors or components[9]. The system also supports specifying views of the

detector that can be used for visualization in yaml files. Several of these are maintained in
the same repository as the geometry and readout plugin code.

Figure 2. ePIC detector including the far forward an backward regions.

Figure 2 shows an example rendering of the full detector geometry. This includes the
central detector and the for forward and far backward detector regions. The ePIC detector
will be placed at the “6 o’clock” interaction point position or IP6.

4.2 Data Model and I/O

The data model used for storing simulated and reconstructed data is defined in a set of yaml
files compatible with the PODIO[10] package. PODIO provides tools to generate C++ code
from the yaml source that provide data structures and memory management routines that
can be used to manage the objects in memory, write them to a ROOT file, and read them
from a ROOT file. The ePIC data model is comprised of a base model (EDM4hep[11]) and
an augmentation (EDM4eic[12]). The EDM4hep model is generic and intended to be non-
experiment specific. It is maintained outside of the ePIC collaboration, but ePIC members
do contribute to it regularly. The EDM4eic data model is written and maintained by the ePIC
collaboration. It augments the EDM4hep data model, but allows for faster implementation
into tagged releases.

Figure 3. Example code from the EDM4eic data model yaml file. (See https://github.com/eic/
EDM4eic/blob/main/edm4eic.yaml for full source.)

Figure 3 shows a snippet of the EDM4eic data model yaml file. PODIO encourages flat
data structures consisting mainly of “plain ’ol data” types such as floats and integers. This

https://github.com/eic/EDM4eic/blob/main/edm4eic.yaml
https://github.com/eic/EDM4eic/blob/main/edm4eic.yaml

makes the ROOT files it produces easy to work with for people familiar with ROOT. Support
for specifying one-to-many and many-to-many relations is also present in the PODIO schema.

4.3 Reconstruction Framework

The reconstruction framework used in the ePIC software stack is JANA2[13][14], a multi-
threaded framework designed for particle physics experiments in NP and HEP[15]. The
JANA framework has been successfully used in the past for processing raw data at large
HTC/HPC facilities[16]. JANA2 also has new features specifically for supporting streaming
systems[17][18]. Active support for the project at Jefferson Lab, a host laboratory for the EIC
experimental program, motivated its selection for ePIC.

JEventProcessorPODIO

edm4eic::Cluster:EcalEndcapNMergedClusters
0.00 us (0.0%)

25 calls
3.06 s

100.0%

edm4eic::Cluster:EcalEndcapNClusters
2.00 ms (0.1%)

25 calls
3.06 s

100.0%

edm4eic::MCRecoClusterParticleAssociation:EcalEndcapNClustersAssociations
0.00 us (0.0%)

25 calls
0.00 us
 0.0%

edm4eic::CalorimeterHit:EcalEndcapNRecHits
3.05 s (99.8%)

edm4hep::RawCalorimeterHit:EcalEndcapNRawHits
0.00 us (0.0%)

25 calls
0.00 us
 0.0%

edm4hep::SimCalorimeterHit:EcalEndcapNHits
0.00 us (0.0%)

25 calls
0.00 us
 0.0%

edm4eic::ProtoCluster:EcalEndcapNIslandProtoClusters
3.00 ms (0.1%)

25 calls
3.05 s
 99.9%

25 calls
0.00 us
 0.0%

25 calls
3.05 s
 99.8%

Figure 4. Augmented dependency graph of the reconstruction chain for a single detector in JANA2
framework (see text for details).

Figure 4 shows an augmented dependency graph for the reconstruction chain of a single
detector. In this case the Electromagnetic Endcap Calorimeter for the electron-going direc-
tion. The cyan colored oval at the top represents the top-level processor object that initially
requests the fully reconstructed objects. The blue rectangles represent algorithms required
for various stages of the reconstruction. The green trapezoid at the bottom represents objects
obtained from the event source (e.g. data file). The yellow rectangle represents associations
objects that are also created by the clusters factory. In this graph, the requests for objects
flows from the top to the bottom while the reconstructed data objects flow from the bottom to
the top in response.

Support for AI/ML using heterogeneous hardware in the reconstruction will be supported
through the sub-event feature in JANA2. This allows algorithms to place work requiring
heterogeneous hardware in a special queue in the topology. From there it can be batched from
multiple events before being sent to the hardware and the output assets recombined with their
respective events upon return. Details of the implementation are still under development.

5 Detector Design

100

Momentum [GeV]
10 4

10 3

10 2

10 1

100

101

102

103

104

105

106

/e
 ra

tio

Pmin, B

1.2 < < 0.8
E/p classifier (no shower profiling)
ML classifier

100

Momentum [GeV]

Raw Contamination
+EMCal supression
+Total E pz cut
+DIRC supression

Pmin

0.8 < < 0.2

90% purity

100

Momentum [GeV]

5x41 GeV

0.2 < < +0.2

Figure 5. Example of comparative study for different designs of the barrel EM calorimeter using
parts of the ePIC software stack. TOP: SciGlass calorimeter technology (courtesy Dmitry Kalinkin).
BOTTOM: Imaging calorimeter technology (courtesy Maria Żurek).

The software stack has been useful in helping to finalize design decisions between differ-
ent detector technologies considered for ePIC. Even without a fully developed reconstruction
chain available, the DD4hep, GEANT4, and PODIO packages can be used to simulate dif-
ferent detector designs and geometries for comparison. Figure 5 shows an example of this
where two candidate technologies for the EM barrel calorimeter where studied to determine
particle identification capabilities as a function of momentum in different pseudo-rapidity re-
gions. The PODIO output from the simulation was in the form of standard ROOT files that
made them easily accessible for ad-hoc analyses.

6 Summary

The ePIC collaboration at the EIC has selected a software stack based on a guiding set of
software principles. The stack includes the general use packages DD4hep, GEANT4, PODIO,
and JANA2 among others. Containerization is used both for a full featured CI chain and for
software development by collaborators. The software ecosystem is designed to meet the
needs of the EIC which is expected to begin data taking in the early 2030s.

Acknowledgement

This material is based upon work supported, in part, by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

References

[1] R. Abdul Khalek, A. Accardi, J. Adam, D. Adamiak, W. Akers, M. Albaladejo, A. Al-
bataineh, M. Alexeev, F. Ameli, P. Antonioli et al., Nuclear Physics A 1026, 122447
(2022)

[2] J.C. Bernauer, C.T. Dean, C. Fanelli, J. Huang, K. Kauder, D. Lawrence, J.D. Osborn,
C. Paus, J.K. Adkins, Y. Akiba et al., Scientific Computing Plan for the ECCE Detector
at the Electron Ion Collider (2022), https://arxiv.org/abs/2205.08607

[3] X. Ai, C. Allaire, N. Calace, A. Czirkos, M. Elsing, I. Ene, R. Farkas, L.G. Gagnon,
R. Garg, P. Gessinger et al., Computing and Software for Big Science 6, 8 (2022)

[4] EIC Software Statement of Principles, https://eic.github.io/activities/
principles.html

[5] T.O.S.G.E.B. on behalf of the Osg Consortium:Ruth Pordes, D. Petravick, B. Kramer,
D. Olson, M. Livny, A. Roy, P. Avery, K. Blackburn, T. Wenaus, F. Würthwein et al.,
Journal of Physics: Conference Series 78, 012057 (2007)

[6] I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wurthwein, The Pilot
Way to Grid Resources Using glideinWMS, in 2009 WRI World Congress on Computer
Science and Information Engineering (2009), Vol. 2, pp. 428–432

[7] DD4hep Github site, https://github.com/AIDASoft/DD4hep
[8] npsim program Github site, https://github.com/eic/npsim
[9] ePIC Geometry Github site, https://github.com/eic/epic

[10] PODIO Github site, https://github.com/AIDASoft/podio
[11] EDM4hep Github site, https://github.com/key4hep/EDM4hep
[12] EDM4eic Github site, https://github.com/eic/EDM4eic
[13] JANA2 Multi-threaded HENP Event Reconstruction (2023), https://doi.org/10.

5281/zenodo.8173154

[14] JANA2 Github site, https://github.com/JeffersonLab/JANA2
[15] Lawrence, David, Boehnlein, Amber, Brei, Nathan, JANA2 Framework for Event Based

and Triggerless Data Processing (2020), https://doi.org/10.1051/epjconf/
202024501022

[16] Lawrence, David, Offsite Data Processing for the GlueX Experiment (2020), https:
//doi.org/10.1051/epjconf/202024507037

[17] F. Ameli, M. Battaglieri, V.V. Berdnikov, M. Bondì, S. Boyarinov, N. Brei, L. Cap-
pelli, A. Celentano, T. Chiarusi, R.D. Vita et al., Streaming readout for next generation
electron scattering experiment (2022), 2202.03085

[18] Ameli, Fabrizio, Battaglieri, Marco, Bondí, Mariangela, Celentano, Andrea, Boyarinov,
Sergey, Brei, Nathan, Chiarusi, Tommaso, De Vita, Raffaella, Fanelli, Cristiano, Gyur-
jyan, Vardan et al., Streaming Readout of the CLAS12 Forward Tagger Using TriDAS
and JANA2 (2021), https://doi.org/10.1051/epjconf/202125104011

https://arxiv.org/abs/2205.08607
https://eic.github.io/activities/principles.html
https://eic.github.io/activities/principles.html
https://github.com/AIDASoft/DD4hep
https://github.com/eic/npsim
https://github.com/eic/epic
https://github.com/AIDASoft/podio
https://github.com/key4hep/EDM4hep
https://github.com/eic/EDM4eic
https://doi.org/10.5281/zenodo.8173154
https://doi.org/10.5281/zenodo.8173154
https://github.com/JeffersonLab/JANA2
https://doi.org/10.1051/epjconf/202024501022
https://doi.org/10.1051/epjconf/202024501022
https://doi.org/10.1051/epjconf/202024507037
https://doi.org/10.1051/epjconf/202024507037
https://doi.org/10.1051/epjconf/202125104011

	Introduction
	Design Philosophy
	Containerization and CI
	The ePIC Software Stack
	Detector Geometry
	Data Model and I/O
	Reconstruction Framework

	Detector Design
	Summary

