Recent Developments in the FullSimLight Simulation Tool
from ATLAS

Raees Khan'*, Marilena Bandieramonte', Joseph Boudreau', Riccardo Maria Bianchi',
Andrea Dell’ Acqua®, Denys Kleklots?, Vakhtang Tsulaia® on behalf of the ATLAS Com-
puting Activity.

'University of Pittsburgh, Pittsburgh, PA 15260, USA
2CERN, EP Department, Meyrin, 1211, Switzerland
3Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Abstract. FullSimLight is a lightweight, Geant4-based command line simu-
lation utility intended for studies of simulation performance. It is part of the
GeoModel toolkit (geomodel.web.cern.ch) which has been stable for more than
one year. The FullSimLight component has recently undergone renewed devel-
opment aimed at extending its functionality. It has been endowed with a GUI
for fast, transparent, and foolproof configuration and with a plugin mechanism
allowing users and developers with diverse goals to extend and customize the
simulation. Geometry and event input can be easily specified on the fly, allow-
ing rapid evaluation of different geometry options and their effect on simulation
performance. User actions and sensitive detectors can also be loaded through
the new plugin mechanism, allowing for customization of Geant4 processing
and hit production. The geometry explorer (gmex), in a parallel development,
has been enhanced with the capability of visualizing FullSimLight track and hit
output. FullSimLight, brought to you by the ATLAS collaboration at the LHC,
is an experiment independent software tool.

1 Introduction

With access to a standalone ATLAS|detector [1] geometry and extraction of the GeoModel
toolkit [2] from the Athena framework, lightweight full simulation through FullSimLight
became possible in ATLAS at the LHC. The basic working of FullSimLight is shown in
Figure 1. Originally created and used for geometry debugging and Geant4 optimization
studies [3], FullSimLight has recently gone through a period of development to allow
users and developers with diverse goals to extend and customize the simulation. The motiva-
tions behind these developments were

e Make simulation using FullSimLight more accessible and foolproof.

*e-mail: raees.ahmad.khan@cern.ch
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

https://cds.cern.ch/record/1129811/files/jinst8_08_s08003.pdf

e Extend the functionality of FullSimLight by allowing the user to add Geant4 User
Actions, Sensitive Detectors, Physics Lists, etc.

e Create built-in visualization for FullSimLight output in gmex (an interactive 3D ge-
ometry visualization tool which is part of GeoModel).

e Make FullsimLight experiment agnostic to extend its suitability beyond the ATLAS
collaboration.

Command Line
or GUI Basic Scoring

—-
Geometry (i) Mean energy

deposition

FullSimLight - (i) Mean track

length
Events (iii) CPU time

Figure 1. Basic working of FullSimLight

2 The FSL graphical user interface

fsl is the GUI to FullSimLight introduced in release 4.3.0 of GeoModel. Figure 2
showcases the main tab of the interface. £s1 lets one select the desired configuration through
its various tabs and ensures that the options selected are compatible with each other. Once
the selections have been made, the user can run the simulation as well as other GeoModel
tools such as gmclash for clash detection and gmex for geometry visualization right within
the £s1 interface. Alternatively, the configuration can be saved into a file in the standard
JSON format which can be loaded back into £s1 or run with FullSimLight on the com-
mand line through the —c flag. In this way, there is no longer any need to overcrowd the
command line with possibly conflicting configuration flags when running Ful1SimLight.
fs1 also provides the user access to a limited amount of Geant4 user interface commands
for verbosity on its main tab. More experienced users who are familiar with the Geant 4 user
interface can open the configuration file in an external editor for further customizations. In
this sense £s1 can be viewed as a configuration editor, providing a FullSimLight con-
figuration file that can be used as a starting point for other customizations, or shipped to other
platforms.

2.1 Event Generation

FullSimLight provides the user with a couple different ways to configure an event gen-
erator which can all be found on the generator tab of £s1. These are,

e Particle Gun

FullSimLight-GUI

@YEGM Generator Magnetic Field Regions Sensitive Detectors User Actions

G4Ui Commands Control Event Run Tracking

Geometry input Verbosity [S (NS (S 0 5
Physics List Name FTFP_BERT +

Number of Threads 8

Number of Events 10

Clear Save Configuration View Configuration © Gmex © Gmelash © FullSimLight

Figure 2. FSL Main Tab

e Pythia
e HepMC3 File (New)
e Generator Plugin (New)

Previously FullSimLight only supported Geant4 Particle Gun and Pythia generators
that were set through macro files. These generators can now be configured through the
fs1 interface. Files in the standard HepMC3 (as well as the deprecated HepMC?2) format
can now also be used to specify events. Additionally FullSimLight now comes with an
abstract class that interfaces Geant 4 to let the user write their own custom event generator
plugins which is explained in Section 3.

2.2 Geant4 Regions Configuration

As part of the bid to extend the functionality of FullSimLight and make it experiment
agnostic, hard coded ATLAS G4 regions were removed. The mechanism to configure G4
regions can now be found on the regions tab in fs1 as shown in Figure 3. The user can
specify root logical volumes and cuts as required.

3 Plugins

Plugins which come in the form of shared libraries (.dylib or .so) containing custom
code were the mechanism chosen to extend FullSimLight. The basic idea can be seen in
Figure 4. The user develops the plugin according to the functionality they need which can
then be plugged into FullSimLight to produce the desired output. The benefit of this
approach is that it gives the user the ability to develop what they need without needing the
core team’s intervention. Plugins also provide a nice structure to make FullSimLight
experiment agnostic since ATLAS specific functionality can live in a set of ATLAS specific
plugins [4].

FullSimLight-GUI
Main Generator Magnetic Field Regions Sensitive Detectors User Actions
Regions

Region Name RootLV Names Electron Cut (GeV) Proton Cut (GeV) Positron Cut (GeV) Gamma Cut (GeV)

1 Pixel siLog,siBLayLog,dbmDiam... 0.05 1 005 005

2 scT BRLSensor,ECSensor0,ECS... 0.05 1 005 005

3 TRT Gas,GasMA 30 1 30 005

4 TRT_Ar Gas_Ar,GasMA_Ar 30 1 30 005

5 EMB LAr:EMB:STAC 01 1 01 01

ece Regions Configuration
Region Name | RootLV Names
List of Regions

Electron Cut (GeV) Proton Cut (GeV)
Positron Cut (GeV) Gamma Cut (GeV)

Figure 3. FSL Regions Tab

Command Line
Geometry ——— orGUI
-y Basic Scoring

—_— .
Events FullSimLight

Figure 4. Customized FullSimLight

= Plugin Output

3.1 Plugin Architecture

Plugins can be used to interface the Geant 4 functionality (G4 objects) of

User Actions

Sensitive Detectors
Magnetic Field
Physics Lists

Event Generators

Once the plugin has been built into a shared library, £s1 provides a simple interface to
add the plugin to the simulation through menus on its various tabs. For example, the User
Action Plugin menu found on the User Actions tab can be seen in Figure 5. Ful1lSimLight
comes already included with a number of custom plugins to do various things such as record
hits, generate the ATLAS magnetic field, etc as well as dummy plugins for example [5].

4

FullSimLight-GUI
Main Generator ~Magnetic Field ~ Regions Sensitive Detectors
User Action Extensions

Plugins List

1 imLight/U i sl itsPlugin.dylib

Figure 5. FSL Menu to add User Action Plugins

3.2 Writing Plugins

With the introduction of the Plugin Architecture in FullSimLight the relevant question
is, How does one actually write a plugin? The basic idea is that FullSimLight pro-
vides abstract classes that can be overridden to allow the user to interface with Geant4
functionality. As a concrete example consider, we want to write a simple “Hits” plugin
which produces a record of Geant4 stepping points. To do this we need access to a
G4UserSteppingAction to get the stepping points and a G4UserEventAction to
get the corresponding event ID. Listing out the steps to writing this plugin we have

e Define implementation classes GenerateHitsStep and GenerateHitsEvent
which inherit from the Geant4 classes G4UserSteppingAction and
G4UserEventAction respectively, giving access to the required functions to get
the stepping points and event ID.

e Define the plugin class, GenerateHitsPlugin which inherits from the abstract class
FSLUserActionPlugin provided by FullSimLight.

e Override the virtual methods get SteppingAction and getEventAction contained
in the abstract class since they correspond to the user actions we have used in the plugin.

e Have the overridden methods return an instance of the their corresponding implementation
class.

A sample code snippet of the above described GenerateHitsPlugin class is shown
in Figure 6. A more in-depth explanation of writing plugins, going over all technicalities as
well as abstract classes available to the user can be found in Refs. [6] [7].

class GenerateHitsPlugin:public FSLUserActionPlugin {

public: User
Actions Abstract
GenerateHitsPlugin();

Plugin Class

virtual G4UserSteppingAction *getSteppingAction() const final override;
virtual G4UserEventAction xgetEventAction() const final override;

GenerateHitsEvent* eventaction = new GenerateHitsEvent();
GenerateHitsStep* stepaction = new GenerateHitsStep();

i

GenerateHitsPlugin::GenerateHitsPlugin()

{

//Passing the stepping action into the event action
//as required by our implementation.

eventaction->SetSteppingAction(stepaction);

}
G4UserSteppingAction *GenerateHitsPlugin::getSteppingAction() const {
return stepaction;

}

G4UserEventAction *GenerateHitsPlugin::getEventAction() const {
return eventaction;

}
extern "C" GenerateHitsPlugin xcreateGenerateHitsPlugin() {

return new GenerateHitsPlugin();

¥

Figure 6. GenerateHitsPlugin class code

4 Visualization

FullSimLight now comes included with a more sophisticated version of the Hits plugin
described briefly in the previous section which produced a record of Geant 4 stepping points
as well as a Tracks plugin which produces a record of tracks when plugged into the simula-
tion. The record is stored in the standard HDF 5 file format and is a part of the output of the
simulation. Figure 7 depicts this process.

Command Line

Geometry ——————p or GUI
— Basic Scoring
—_— A
Events FullSimLight HDF5 file with
—— stepping points or
Hits Plugin tracks information

orTracks — >
Plugin
Figure 7. FullSimLight with Hits or Tracks Plugin

In parallel to the development of these plugins, gmex (the geometry visualization tool
of GeoModel) was modified to provide a display for the simulation output. The HDF5 file
generated by the Hits or Tracks Plugin can be loaded into gmex to be co-displayed with the
geometry. Examples of this can be seen in Figures 8, 9.

6

Figure 8. Steps Display in ATLAS detector Figure 9. Tracks Display in ATLAS detector

5 Example

As explained in Section 1, a primary impetus behind the recent advancements was to render
FullSimLight experiment agnostic. In this context, an illustrative instance of its applica-
tion beyond the ATLAS framework is pertinent. It is commonly believed that grand unified
theories (GUTs) predict proton decay. Muscovite Mica has emerged as a promising substrate
for detecting evidence of such decay through the analysis of positron tracks through it [8].
Simulation of this process can be done using FullSimLight. To start one can create a
geometry description of a cube of Mica using GeoModel , as depicted in Figure 10.

void MicaPlugin::create(GeoPhysVol xworld, bool /xpublishx/)

{
GeoElement *potassium = new GeoElement("Potassium", "K", 19, 39xgram/mole);
GeoElement *oxygen = new GeoElement("Oxygen", "o, 8, 1léxgram/mole);
GeoElement *aluminium = new GeoElement("Aluminium", "Al", 13, 26k%gram/mole);
GeoElement xsilicon = new GeoElement("Silicon", "Si", 14, 28%gram/mole);
GeoElement xhydrogen = new GeoElement("Hydrogen", "H", 1, 21xgram/mole);
GeoElement *fluorine = new GeoElement("Fluorine", "F", 9, 19%gram/mole);
//Defining Mica
double densityOfMica = 2.82%gram/cm3;
GeoMaterial *Mica = new GeoMaterial("Mica",densityOfMica);
Mica->add(potassium,1);
Mica->add(oxygen,11.8);
Mica->add(aluminium,3); _>
Mica->add(silicon,3);
Mica->add(hydrogen,1.8);
Mica->add(fluorine,0.2);
Mica->lock();
const GeoBox xMicaBox = new GeoBox(10@%cm, 100%cm,100%cm);
const GeolLogVol *Micalog = new GeolLogVol("Micalog", MicaBox, Mica);
GeoPhysVol *MicaPhys = new GeoPhysVol(Micalog);
world->add(MicaPhys);

}

Figure 10. Mica geometry plugin code (left) and resulting geometry visualized in gmex (right).

The Mica geometry plugin can then directly be plugged into FullSimLight and
positrons can be shot through it. Figure 11 shows the particle shower in the Mica cube
7

obtained by adding the Tracks plugin to the simulation and visualizing in gmex. One can
obtain further desired information by writing and adding custom plugins to the simulation.

Figure 11. Particle shower inside Mica Cube

6 Conclusion

FullSimLight offers a powerful and versatile tool for simulation studies. Since its ini-
tial introduction as a basic tool a few years back, it has proven very useful in ATLAS for
debugging and optimizations. Now with enhanced accessibility through fs1, increased
extensibility through the plugin architecture, and newly built-in visualization capabilities,
FullSimLight has grown considerably, with its lightweight nature and experiment inde-
pendence making it suitable for a wide range of applications within and beyond the ATLAS
collaboration at the LHC. Future work will be geared towards ensuring a stable and compat-
ible product.

References

[1] ATLAS Collaboration, JINST 3 S08003 (2008)

[2] J. Boudreau, V. Tsulaia, The GeoModel toolkit for detector description, in Computing
in high energy physics and nuclear physics. Proceedings, Conference, CHEP 04, Inter-
laken, Switzerland, September 27-October 1, 2004 (2005), pp. 353-356, hhttps://cds.cern.
ch/record/865601

[3] M. Bandieramonte, R. M. Bianchi, J. Boudreau, EPJ Web of Conf. 245, 02029 (2020)

[4] https://gitlab.cern.ch/atlas/geomodelatlas/ ATLASExtensions

[5] https://gitlab.cern.ch/GeoModelDev/GeoModel/-/tree/master/FullSimLight/Plugins

[6] https://geomodel.web.cern.ch/home/fullsimlight/plugins/

[7] https://geomodel.web.cern.ch/home/fullsimlight/plugin-support/

[8] EM. Russell. In Quodons in Mica, J.F. R. Archilla et al, eds., Springer (2015) pp.
474-559

https://cds.cern.ch/record/865601
https://cds.cern.ch/record/865601
https://gitlab.cern.ch/atlas/geomodelatlas/ATLASExtensions
https://gitlab.cern.ch/GeoModelDev/GeoModel/-/tree/master/FullSimLight/Plugins
https://geomodel.web.cern.ch/home/fullsimlight/plugins/
https://geomodel.web.cern.ch/home/fullsimlight/plugin-support/

	Introduction
	The FSL graphical user interface
	Event Generation
	Geant4 Regions Configuration

	Plugins
	Plugin Architecture
	Writing Plugins

	Visualization
	Example
	Conclusion

