
Flexible, robust and minimal-overhead Event Data Model
for track reconstruction in ACTS

Paul Gessinger1,∗

1CERN

Abstract. ACTS (A Common Tracking Software) is an experiment indepen-
dent toolkit for track reconstruction, which is designed from the ground up for
thread-safety and high performance. It is built to accommodate different experi-
ment deployment scenarios, and also serves as community platform for research
and development of new approaches and algorithms.
The Event Data Model (EDM) is a critical piece of the tracking library that
is visible to clients. Until this point, ACTS was mostly focused on an inter-
nal EDM, targeting data interchange various components in the toolkit. This
contribution reports on a new and improved client EDM for ACTS. For an
experiment-agnostic toolkit like ACTS, this requires strong abstractions of po-
tentially experiment-specific details, including event context data like sensor
alignments, and tracking inputs like measurements. By applying similar ab-
straction strategies, the presented EDM can be an expressive, low-overhead ab-
straction over experiment-specific backends, and seamlessly integrates into an
experiment framework and IO model.
The presented EDM includes the ACTS track class, the main data type which
tracking clients interact with. It is designed to be interfaced with different IO
backends, and also flexible enough to support dynamic information required by
various track fitters. At the same time, careful design ensures it can seamlessly
serve as a key data object in experiment reconstruction data flows.
In this contribution, the interaction of this centerpiece of the example work-
flows in ACTS with the standalone ROOT IO, as well as the integration with
the EDM4hep package will be shown, and key performance characteristics dis-
cussed.

1 Track reconstruction

Track reconstruction is the process of converting raw signals from charged particle detectors
into higher-level measurements of the physical particles that traversed the detector. Depend-
ing on the experiment setup, detector technologies and geometric configuration, different
stages of pattern recognition algorithms are deployed to perform this process.

In many silicon-based tracking detectors, and in particular in the ATLAS[1] experiment
and its reconstruction software [2], reconstruction starts by grouping measurements into com-
binations loosely compatible with a track coming from the interaction region. Starting from

∗e-mail: paul.gessinger@cern.ch



clustered detector signals, measurements are first converted into three-dimensional space-
points, and then grouped into triplets (seeding), allowing for a crude estimation of the curva-
ture and thus momentum.

After a sequence of filtering steps, a track finding stage explores the recorded event look-
ing for additional sensor measurements that are compatible with the initial track hypothesis.
The resulting track candidates can then be refitted to yield the highest-precision estimate of
the associated particle properties. In case of ambiguities between competing tracks in an
event, an ambiguity resolution stage can identify and reduce duplications.

Seeding

Track finding

Track fitting

Figure 1. Illustration of a track reconstruction chain in ACTS. Seeding from space-points yields track
candidates, that are completed by track finding. A final track fit yields high-precision properties.

2 The ACTS toolkit

ACTS [3] is an experiment independent software toolkit for charged particle reconstruction.
Originally based off of the ATLAS tracking code, it has since significant development and
improvement. The core concepts and approaches, however, remain the same.

ACTS consists of a number of components that serve various purposes. A geometry
modelling component is used to describe both sensitive and passive parts of the detector. The
passive material is treated in an approximated fashion, allowing significant speedup com-
pared to fully detailed geometry descriptions, with negligible impact on precision. A pattern
recognition component implements a triplet seeding algorithm based on the ATLAS pattern
recognition. It is designed to be flexible and allow experiment-specific tuning of ranking and
filtering criteria. Track finding is achieved with a track finding component, which contains a
combinatorial Kalman Filter [4] implementation, that can iteratively attach measurements to
a track candidate. Multiple fitters are included in the track fitter component. A production-
ready Kalman Filter is the backbone of this component, with a dedicated fitter for particles
with non-gaussian material interactions and an experimental global fitter based on χ2 min-
imization are available. A robust vertexing component completes the toolkit, with multiple
vertex finding and fitting algorithms available for primary vertex reconstruction.

2.1 Event Data Model

The components mentioned in section 2 can be assembled into a complete track reconstruc-
tion chain. In fact, ACTS ships with a fully-integrated example reconstruction chain using
the OpenDataDetector [5]. Between these components, data needs to be exchanged in a well-
defined way. This is achieved through the Event Data Model (EDM), which is a set of data



types and interfaces representing the content of an event. Until very recently, ACTS has fo-
cused mainly on an internal EDM, which is really focused on efficient interchange between
components inside the toolkit, sometimes at the cost of usability for clients. With the main
reconstruction chain becomes more and more mature, however, the focus has shifted to a
more client-oriented EDM encapsulating the outputs of tracking.

Experiment
measurements

Clusters Space points

Triplet seeds Track candidates Final tracks

Focus of this work:
TrackContainer
& TrackProxy

Clusterization SP formation

Seeding

Track finding Track fit

Figure 2. Diagram showing the stages and data flow of a track reconstruction chain. The boxes show
EDM objects that are passed between the stages. TrackContainer and TrackProxy are highlighted
as the focus of this work.

Figure 2 shows an overview of the EDM data types and how they form a data-flow se-
quence. Measurements coming from the experiment software are the main inputs of the
chain. This data-type is abstracted in ACTS in a way that allows the details of these measure-
ments to be fully experiment-specific, for example allowing careful treatment of hardware
details. ACTS ships with a clusterization algorithm, which can turn segmented raw measure-
ments into clusters, the second EDM object in the chain, representing particle intersections
with the sensors. For the creation of track seeds, clusters need to be converted into three-
dimensional space-points, combining information from multiple clusters where needed, e.g.
for one-dimensional silicon strip sensors. The space-points and seeds are part of the EDM
as well, since they are handed over to the track finding component. This component is re-
sponsible for the creation of completed tracks, which can then optionally be refitted with a
precision track fitter.

Both the track finding and the precision track fit produce track objects, which are the
primary output of the tracking chain.

3 High-level Track Event Data Model

Track information in ACTS can be divided into two parts: track-level information and track
state-level information.

Track-level information are properties that relate to the full track. This includes the fitted
track parameters with respect to some reference point, often the origin of the detector or the
beamspot. It can also include summary information from the track finding stage, like the
overall number of clusters that were used in the creation of the track, or the fit quality from
the track fit.

Tracks are built-up from track states, where each track state corresponds to a discrete
state determining the track properties. This mainly includes measurements states, expected
intersections with sensors where no measurement was found (holes), and intersections with
known passive material. The EDM allows building up a track from these track states itera-
tively. For example, the Kalman Filter will append track states to the sequence whenever it
encounters a sensitive detector layer. The content of the track states is defined such that the
fitter can store all relevant information, with as little need for extra information as possible.



It is also designed to be flexible enough to support different fitters, which might require dif-
ferent information to be stored, as well as the combinatorial Kalman Filter, which produces a
tree of track states, instead of a fully linear sequence.

Ultimately, each output track is associated with a well-defined sequence of track states, al-
lowing downstream consumers of the EDM to access the fully detailed information produced
during track reconstruction.

3.1 Architecture

Several considerations have been taken into account during the design of the EDM archi-
tecture. A main goal was to store different properties as individual vectors of information,
rather than having a single vector of a structure containing all information. At the same time,
the access should still behave in an object-oriented way, where an object corresponds to a
track or track state. Figure 3 shows this object-oriented access model for the example of
the track container and track proxy object. The track container holds vectors of the various
pieces of information, and has methods to add a track, and to allow iteration over all tracks.
This iteration, or index based access, yields a track proxy object, which exposes the proper-
ties as methods returning references, while internally only holding a pointer to and an index
into the track container. The types are carefully built to preserve const-correctness, i.e. even
though a track proxy is a value type which can be copied, it will not allow modification of the
underlying track container if it is immutable.

♦ container

♦ index

▶ parameters()

▶ covariance()

▶ surface()
. . .

TrackProxy

i=0: a, b, c, d, . . .

i=1: a, b, c, d, . . .

i=2: a, b, c, d, . . .

i=3: a, b, c, d, . . .

i=4: a, b, c, d, . . .

▶ addTrack()

▶ begin()

▶ end()

TrackContainer

Figure 3. Illustration of the proxy pattern used in the track EDM. The track proxy logically represents
a single track, and points to the data stored in the track container.

Another important goal was to make the track EDM fully agnostic to the concrete per-
sistency framework of an experiment. This is crucial, since the need for conversion between
different representations of the same information, just to be able to use the experiments input-
output system can be a significant overhead.

3.2 Implementation

To make the EDM implementation independent of an experiment persistency framework, it is
separated into a frontend layer and a backend layer. The frontend layer contains user-facing
getters and setters, as well as any convenience methods that might be helpful. These methods
are located either in the proxy objects or in the containers, depending on whether they operate
on a single element or the entire container.

Overall, there are four main classes that make up the frontend layer: TrackProxy,
TrackContainer, TrackStateProxy and MultiTrajectory. The latter serves as the



TrackProxy

TrackContainer

EDM4hep input

Track finding

Track fitters

TrackState backend

std::vector

PODIO

ATLAS xAOD

Track backend

std::vector

PODIO

ATLAS xAOD

Performance monitoring

Downstream reconstruction

EDM4hep output

backend interface / contract

Figure 4. Diagram of the EDM architecture. The frontend layer is used by other ACTS components,
and downstream clients. It is separated from the backend layer by an interface. Conversion to and from
EDM4hep is possible. Examples of direct backend implementations are shown.

track state container, where the name indicates that it is able to handle a branching tree struc-
ture of track states. TrackProxy and TrackStateProxy expose methods to get the local
track parameters and covariance, corresponding reference surface, and also includes global
statistics like the total number of measurements, outliers or holes in case of TrackProxy.
TrackProxy also has a method to conveniently iterate over the associated track states from
the outside inwards, yielding TrackStateProxy objects from the track state container.

In case of TrackStateProxy, functionality is exposed in the frontend layer to allocate
optional components, with the goal of reduced memory footprint. There are two main uses
of this: track parameters and measurements. The track-state EDM supports storing up to
three sets of local track parameters and covariance matrices, modeled after the information
the Kalman Filter formalism needs to store: predicted, filtered and smoothed parameters and
covariances. In case of combinatorial track finding, track hypothesis can start out with a com-
mon sequence of track states, and then branch out when multiple compatible measurements
are encountered. The track state EDM allows allocating only the track parameters that are
needed, and even allows sharing the same track parameters between multiple track states, so
that branching track states can share for example the same predicted parameters. How this
is achieved is left to the backend layer. Measurements are handled in a similar way, where
the track finding decides how much storage is needed based on the number of dimensions of
an incoming measurement. It then instructs the EDM through the frontend layer to ensure
enough memory is available, where the specifics are again left up to the backend layer.

The backend layer exposes an interface that is used by the frontend layer to store and re-
trieve information. It uses dedicated methods where needed, such as for storing reference sur-
faces or source-link objects, which are lightweight container objects for experiment-specific
measurements. For the majority of components, the frontend communicates with the back-
end through a single method to obtain references to the underlying data. Components are
accessed via hashes of the component name, where the hashes are calculated at compile-time
wherever possible. The backend can then use the hashed component name to retrieve the



relevant memory. To allow directly manipulating the backing memory, the frontend expects
the backend to return references into the backing storage.
TrackProxy provides a method to copy a track between different track containers, and

only uses the frontend layer to accomplish this. This means that copying tracks between
different backend implementations is trivial.

Figure 4 shows a diagram of the EDM architecture. At the center are the TrackProxy
and TrackContainer. These classes are produced by the track finding and track fitting
components, and are the main interface point with the clients of tracking. In ACTS itself, all
of the performance monitoring and downstream reconstruction is either directly built on top
of these objects, or converts them into an internal EDM depending on the use case. Behind the
backend interface, the track container coordinates with both a track state and a track backend,
where a few examples are shown, and will be discussed below.

3.3 Integration with storage technologies

EDM4hep

EDM4hep [6] is a common EDM implementation that is meant to cleanly integrate and con-
nect different pieces of a reconstruction chain, mainly geared towards collider studies. It is
based on the PODIO [7] framework, which uses a high-level declarative format to define an
EDM which can then be used to generate C++ code to manipulate the data objects. The
tracking related parts EDM4hep use the LCIO parametrization [8], which defines which in-
formation is stored to define the properties of a track:

d0, z0, ϕ, tan λ,Ω. (1)

Here, d0 and z0 are the transverse and longitudinal impact parameters, relative to some
reference point. ϕ is the azimuth angle of the track, while tan λ is directly related to the polar
angle θ. Ω is the signed inverse of the curvature radius of the track, and is therefore a measure
of the momentum of a track, in the presence of a magnetic field.

ACTS itself natively uses a parametrization adopted from the ATLAS experiment:

l0, l1, ϕ, θ, q/p, t. (2)

Here, l0 and l1 are the general local two-dimensional coordinates, whose interpretation is
defined by a reference surface. ϕ and θ are again the azimuth and polar angles, while q/p is
the signed inverse momentum. The time t is also included by default.

Note that ACTS requires a reference surfaces and stores a local position on it. This means
that during the conversion from ACTS to EDM4hep, the local position on the sensor is lost,
as the perigee reference point has to be set to the global track position to be correct. As
a consequence, when converting from EDM4hep to ACTS, the local position information
cannot be recovered.

Additionally, it is not feasible to implement EDM4hep as a backend for the abstracted
track EDM infrastructure described in the previous sections, as it does not fulfill the required
contract needed by the interface mechanism.

For this reason, the EDM4hep integration in ACTS is limited to conversion to and from
the high-level track EDM, as is indicated in Figure 4. The conversion includes track states and
is technically complete, except for the local position on surface. When converting EDM4hep
tracks to the high-level track EDM, ad-hoc perigee surfaces are created to model the infor-
mation stored in EDM4hep.



PODIO

As mentioned before, PODIO can be used to define an EDM using a high-level declarative
approach. A PODIO backend was implemented that can be used with the high-level track
EDM discussed before.

The PODIO EDM consists of the following primary datatypes:

• ActsPodioEdm::Track

• ActsPodioEdm::TrackState

• ActsPodioEdm::BoundParameters

• ActsPodioEdm::Jacobian

These datatypes do not contain the full information directly, but instead delegate this to
the following components:

• ActsPodioEdm::Vector3f

• ActsPodioEdm::Surface

• ActsPodioEdm::TrackInfo

• ActsPodioEdm::TrackStateInfo

• ActsPodioEdm::BoundParametersInfo

• ActsPodioEdm::JacobianInfo

Using these components, it is possible for the backend implementation to supply constant
and mutable references to the underlying information, which is required to implement the
interface contract expected by the frontend layer.

The functionality of the PODIO backend is tested using a common test suite that is shared
with the default transient-only backend. In addition, a roundtrip test is implemented that
ensures that information can be written and read in, reproducing the same information. The
backend has also been tested to work correctly with the Kalman Filter, demonstrating that the
abstraction mechanism is successful.

4 Conclusion

This document presents work on a high-level track EDM in the ACTS toolkit. In this context,
a two-part EDM architecture was presented, consisting of a frontend layer that other compo-
nents of the tracking as well as clients of tracking interact with, and a backend layer that is
responsible for the actual storage. A transient-only backend is used by default.

The possibility to convert to and from the EDM4hep track EDM was discussed, and is
included in the ACTS library. Additionally, a full backend implementation using PODIO was
discussed, which allows components like the Kalman Filter in ACTS to transparently write
outputs to PODIO files, enabling them to be used by downstream consumers.



5 Acknowledgements

The work has been supported by the CERN Strategic Programme on Technologies for Future
Experiments. https://ep-rnd.web.cern.ch/

References

[1] G. Aad et al. (ATLAS), JINST 3, S08003 (2008)
[2] Athena, https://doi.org/10.5281/zenodo.2641996 (2019)
[3] X. Ai, C. Allaire, N. Calace, A. Czirkos, M. Elsing, I. Ene, R. Farkas, L.G. Gagnon,

R. Garg, P. Gessinger et al., Computing and Software for Big Science 6 (2022)
[4] R. Frühwirth, Nucl. Instrum. Meth. A262, 444 (1987)
[5] C. Allaire, P. Gessinger, J. Hdrinka, M. Kiehn, F. Kimpel, J. Niermann, A. Salzburger,

S. Sevova, OpenDataDetector, https://doi.org/10.5281/zenodo.4674401 (2021)
[6] EDM4hep GitHub repository, https://github.com/key4hep/EDM4hep
[7] podio GitHub repository, https://github.com/AIDASoft/podio
[8] T. Kraemer, DESY, Track Parameters in LCIO (2006), https://bib-pubdb1.desy.
de/record/81214

https://ep-rnd.web.cern.ch/
https://doi.org/10.5281/zenodo.2641996
https://doi.org/10.5281/zenodo.4674401
https://github.com/key4hep/EDM4hep
https://github.com/AIDASoft/podio
https://bib-pubdb1.desy.de/record/81214
https://bib-pubdb1.desy.de/record/81214

	Track reconstruction
	The ACTS toolkit
	Event Data Model

	High-level Track Event Data Model
	Architecture
	Implementation
	Integration with storage technologies

	Conclusion
	Acknowledgements

