
EvtGen — recent developments and prospects1

Fernando Abudinén1,∗, John Back1,∗∗, Michal Kreps1,∗∗∗, and Thomas Latham1,∗∗∗∗
2

1Department of Physics, University of Warwick, Gibbet Hill Rd,3

Coventry CV4 7AL, United Kingdom4

Abstract. EvtGen is an event generator specialised for decays of heavy5

hadrons. Since its early development in the 90’s, the generator has been ex-6

tensively used and has become an essential tool for heavy-flavour physics anal-7

yses. Throughout this time, its source code has remained mostly unchanged,8

except for additions of new decay models. In view of the upcoming boom of9

multi-threaded processing, we have launched a modernisation campaign with10

the chief goal of making EvtGen thread safe. We report on the challenges en-11

countered in this endeavour and the milestones reached so far.12

1 Introduction13

EvtGen [1] is an event generator specialised for the simulation of decays of heavy hadrons.14

Due to its independence from the experimental environment, EvtGen is used in several com-15

puting frameworks in high-energy physics to simulate the decays of heavy hadrons produced16

in particle collisions and heavy-quark jets. Since its origins within the CLEO and BaBar col-17

laborations, EvtGen has been extensively used to simulate underlying physics processes, and18

has become an essential tool for heavy-flavour physics analyses.19

EvtGen contains currently 139 decay models. Each one corresponds to a separate module20

implementing the dynamics of a specific decay type. Most decay models use amplitudes to21

calculate the decay probability while others set the probability directly. Based on the output22

of the decay model, the probability for each node in a decay tree is used to simulate the entire23

decay chain including all kinematic correlations.24

Among the implemented features, EvtGen maintains a detailed decay table with a large25

number of explicit decays. When the sum of the branching fractions of known hadronic26

decays does not add up to unity, the remainder is filled up by generating the appropriate quark27

configurations and passing them to Pythia 8 [2] for fragmentation. In particular for b-baryon28

decays, where far fewer branching fractions are currently measured, there is a much greater29

dependence on Pythia 8 than for other hadrons. There are two further external dependencies30

in EvtGen: TAUOLA [3–6] is used to simulate the decays of τ leptons, and PHOTOS [7] is31

used to simulate final-state radiation (FSR).32

Since its origins, the EvtGen core framework has been kept almost unchanged. The main33

developments have been the addition of new decay models provided by various collabora-34

∗e-mail: fernando.abudinen@cern.ch
∗∗e-mail: j.j.back@warwick.ac.uk
∗∗∗e-mail: michal.kreps@cern.ch
∗∗∗∗e-mail: t.latham@warwick.ac.uk



tions. In view of the current transition of computing frameworks towards multi-threaded pro-35

cessing, we have launched a modernisation campaign with the chief goal of making EvtGen36

thread safe. As a first step, we focused on identifying and implementing the modifications37

necessary to enable thread safety. In this process, we have taken the chance to work also on38

reducing code duplication and unifying the coding style across the decay models.39

An important part of this campaign has been the development of a global testing frame-40

work, which will be described in Sec. 2. We will then discuss the implemented modifications41

to make EvtGen thread safe in Sec. 3. Part of the challenge has been the external dependen-42

cies on generators that are not yet thread safe. We explore alternatives for them in Secs. 443

and 5. The subsequent section 6 is devoted to discuss possibilities for further improvements44

identified during the campaign. Section 7 describes a technique we are currently exploring45

for updating the database of the decay table, followed by a summary and an outlook in Sec. 8.46

2 Testing framework47

The need to validate the physics output of the simulation after implementing code modifica-48

tions has prompted us to develop a global testing framework. It consists of a general testing49

module that is steered with JSON [8] configuration files. Each configuration file specifies50

a decay tree, the decay model for each node, and a list of validation histograms of physics51

observables. We choose observables associated with the specific kinematics and topology of52

the underlying decay processes. Based on the configuration file, the testing module generates53

events for the specified decay tree, calculates the physics observables for each event and fills54

the validation histograms, which are then compared with reference distributions produced55

prior to the modifications.56

Figure 1 shows example validation histograms for two decay models. Before the devel-57

opment of the global testing framework, tests in different formats existed for about 40% of58

the decay models. We migrated the preexisting tests to be consistent with the new testing59

framework and introduced new configuration files in order to have at least one test for each60

existing decay model. However, the current list of tests is not exhaustive since some decay61

models support various configurations that are not yet covered, such as various decay topolo-62

gies or form factors. Thus, we will continue expanding the list of tests and will request tests63

to be added for each future new decay model.64

Besides the validation after code modifications, the global testing framework has helped65

us to uncover and fix issues within existing decay models that were not tested before. As a66

further step, we set up a strategy for the execution of the tests and the comparison of the val-67

idation histograms. When modifications are committed, the testing framework will identify68

which decay models are affected based on the modified files. It will then carry out the tests69

only for the affected decay models. If the modifications involve files concerning the EvtGen70

core framework, then all tests will be carried out.71

For the comparison of validation histograms, our current strategy is to use the histograms72

produced with the master branch as reference. For any feature branch, the histograms used as73

reference will be the ones corresponding to the best common ancestor commit between the74

master and the feature branch, that is the so-called merge base.75

3 Making EvtGen thread safe76

Making EvtGen thread safe requires to overcome internal and external limitations. The in-77

ternal limitations are associated with the structure of the core framework, while the external78

limitations are associated with third-party software dependencies. We have identified the79



0 5 10 15 20
]2 [GeV2q 

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02
0.022

2
Fr

ac
tio

n 
of

 e
ve

nt
s 

pe
r 

0.
3 

G
eV

1− 0.5− 0 0.5 1

ρH, θ cos

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Fr
ac

tio
n 

of
 e

ve
nt

s 
pe

r 
0.

02

Figure 1. Examples of validation histograms. Left: distribution of dimuon invariant-mass squared
m(µ+µ−)2 = q2 (in natural units c = 1) for B+ → K+µ+µ− decays simulated with the BTOSLLBALL
decay model. Right: distribution of helicity angle cos θH,ρ for B+→ D0ρ+(→ π+π0) decays simulated
with the SVS decay model. The helicity angle cos θH,ρ corresponds to the angle between the B+ and the
π+ momenta in the ρ+ frame.

changes necessary to overcome the limitations and implemented a preliminary set of solu-80

tions.81

The internal limitations are mainly associated with global static instances of the random82

number generator, the particle properties and the decay table. Static objects are thread safe83

only at initialisation. They are not thread safe if they mutate during execution as multiple84

threads can modify them simultaneously irrespective of each other. We have tackled this85

issue by, where possible, converting static objects into static constant objects. For exam-86

ple, cached values of particle properties. Where it was not possible to make static objects87

constant, they have instead been converted into static thread-local objects, such that there is88

effectively one global object per thread. The random number generator and decay table are89

examples of objects that have been treated in this way. Regarding the random number gener-90

ator, this treatment also guarantees that the results are reproducible irrespective of the number91

of threads, provided that the seeding is based on the event number.92

The external limitations are associated with the TAUOLA and PHOTOS generators which93

are currently not thread safe. While the authors of these generators are exploring ways to94

implement thread safety, we have temporarily overcome the limitations by serialising the95

calls for these generators using the C++ mutex functionality. In this way, each time a thread96

calls up one of these generators, the associated objects are locked for all other threads until97

the operation is concluded.98

This preliminary set of solutions enables thread safety, passing successfully the tests for99

all decay models. We have further studied the performance in a multi-threaded environment.100

Figure 2 shows the speedup reached by the simulation with and without simulation of FSR101

using PHOTOS. In both cases some speedup is achieved, especially when switching off the102

FSR simulation. However, there is only very little speedup when switching on the FSR103

simulation.104

Although further improvements in the EvtGen core framework are possible, the external105

dependencies remain the limiting factor to exploit the capabilities of multi-threading. We106

therefore explore the possibility to use alternatives for the simulation of τ decays and FSR.107



12 4 8 12 16 20 24 28 32
 Number of threads 

0

2

4

6

8

10

12

 S
pe

ed
up

 

Maximal speedup
PHOTOS off
PHOTOS on
No speedup

Figure 2. Speedup versus number of threads after implementing thread safety. The black solid curve
shows the ideal case with linear maximal speedup, while the red solid horizontal curve shows no
speedup. The dotted blue curve shows the large increase in code execution speed when FSR is not
enabled (PHOTOS off), while the dashed orange curve shows the limited speedup when FSR is en-
abled (PHOTOS on). The blue shaded area corresponds to the hyperthreading regime.

4 Simulation of τ decays108

Decays of τ leptons are simulated through an interface with TAUOLA. Besides the fact that109

TAUOLA is currently not thread safe, the present interface does not propagate information110

about the spin state of the τ lepton, which is essential for physics analyses that are sensitive111

to the τ polarisation.112

As an alternative, we are exploring the possibility to simulate τ decays with spin-state113

propagation using the Helicity-Matrix-Element (HME) module inside Pythia 8. We have fi-114

nalised a first version of an interface between EvtGen and the Pythia HME module and tested115

the output of the simulation. A particular challenge has been the spin-basis conversion be-116

tween the two generators. We have implemented a preliminary version of the basis conversion117

that has provided the expected results in specific cases. However, further development and118

validation is needed for general use. An implementation of a general spin-basis conversion119

would be also useful for propagation of spin-state information with TAUOLA.120

Figure 3 shows a comparison of the physics output for B+→ τ+(→ π+ν̄τ)ντ and121

B+→ τ+(→ µ+νµν̄τ)ντ decays obtained using the Pythia HME module and TAUOLA. For122

these two cases, the output of the two simulations agree within expectations.123

5 Simulation of final-state radiation124

Most of the simulation produced with EvtGen is generated with FSR. The only currently125

available option for simulating FSR photon emission for charged particles is to use PHOTOS126

for the whole decay tree or for particular decay nodes. When FSR is enabled, the decay127

is passed to PHOTOS. The decay is then retrieved to add the emitted photons and update128

the momenta of the particles inside the decay. The propagation of the information between129



1− 0.5− 0 0.5 1

Hθcos

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Fr

ac
tio

n 
of

 e
ve

nt
s 

pe
r 

0.
04 TAU

HME

1− 0.5− 0 0.5 1

Hθcos

0

0.005

0.01

0.015

0.02

0.025

0.03

Fr
ac

tio
n 

of
 e

ve
nt

s 
pe

r 
0.

04 TAU
HME

Figure 3. Distributions of helicity angle cos θH for simulated (left) B+→ τ+(→ π+ν̄τ)ντ and
(right) B+→ τ+(→ µ+νµν̄τ)ντ decays. The helicity angle cos θH corresponds to the angle in the τ frame
between the B+ and the π+ for the left plot, and between the B+ and the µ+ for the right plot. The solid
blue (dotted red) curve corresponds to events where the τ decays are simulated with the Pythia HME
module (TAUOLA generator).

PHOTOS and EvtGen happens through an interface which converts the EvtGen particle ob-130

jects into a HepMC event [9] and vice versa. The HepMC event is passed to PHOTOS, which131

converts it internally into its own objects.132

Currently about one third of the CPU time consumed by EvtGen is due to FSR simula-133

tion. Based on profiling, we estimate that roughly half of this time is effectively consumed134

during the conversion of internal objects into HepMC events and vice versa. An adaptation135

of the interface thus has a large potential to reduce the CPU consumption by avoiding the136

intermediate conversion into HepMC events. However, the limitation of PHOTOS not being137

thread safe still remains.138

We are exploring the possibility to use the PHOTONS++ module [10] inside the Sherpa139

generator [11], which is able to simulate soft and hard photon emissions and complies with140

the thread safety requirement. It includes various configuration parameters, such as the en-141

ergy cut-off, which need to be tuned depending on the decay topology and kinematics. We142

have recently started to implement an interface between EvtGen and Sherpa with the aim of143

transferring decays to the PHOTONS++ module and back. The current strategy is to use the144

intermediate conversion into HepMC objects for the transfer of information between the two145

generators. Although it is CPU time consuming, this procedure has been extensively vali-146

dated. It can thus allow us to prototype expeditiously a preliminary interface and focus on147

parameter tuning and testing of the physics output. However, we intend to generally avoid148

the HepMC conversion in the long term.149

6 Improving multi-threaded performance150

In our current implementation of thread safety (see Sec. 3), the decay table is declared as a151

thread-local object. However, ideally it should be a constant object to avoid having a repli-152

cated instance per thread. The reason why it has not been implemented as such lies deep153

inside the core framework: the decay table instance incorporates a container of decay mod-154

els as a data member. Each decay model overrides from the EvtDecayBase class a virtual155

decay function, which generates the particle decay at each node. The decay function can156



mutate the state of the decay model objects and is therefore not constant. Hence the state of157

the decay table is also mutable.158

A possible solution is to modify the decay function such that it is constant. Although159

conceptually straightforward, such a solution requires the modification of every single de-160

cay model since the decay function is always overridden. Such a far-reaching intervention161

requires a comprehensive validation and would considerably delay the completion of a first162

thread-safe release. Thus, we defer the implementation of this solution for future develop-163

ments.164

7 Updating the decay table branching fractions165

Another challenge associated with the decay table is the updating of its database. The Particle166

Data Group (PDG) [12] keeps an up-to-date collection of high-energy physics measurements167

and averages. However, the amount of provided machine readable information is limited.168

This situation is expected to improve with a future new application programming interface.169

However, avoiding ambiguities between branching fraction measurements will still require170

human intervention, for instance, to avoid double counting of decay modes with intermediate171

resonances.172

We explore the possibility to update the decay table database in a semi-automatic way by173

generating simulation and comparing the frequencies of the generated decays with the world-174

average branching fractions. The strategy relies on modifying the branching fractions with175

the worst discrepancies in an iterative process to minimize a χ2 quantity defined as the sum176

of the pulls over all exclusive branching fractions. The pulls correspond to the differences177

between the branching fraction values in the decay table and the known PDG values, divided178

by the uncertainties on the PDG values. Inclusive branching fractions are ignored in the179

χ2 calculation, but checked for consistency at the end of the iterative procedure.180

Figure 4 shows the branching fraction pulls for known D+s decay modes before and after181

updating the database of the decay table. The value of χ2 over the number of degrees of free-182

dom was initially 963/72 and after the iterative procedure it was 58/72. This example shows183

that the procedure can efficiently improve the agreement with the world’s best knowledge.184

Hence we plan to test it with particles having larger numbers of decay modes.185

0 20 40 60 80 100
Decay mode

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Pu
ll

0 20 40 60 80 100
Decay mode

4

2

0

2

4

Pu
ll

Figure 4. Pulls of branching fractions for known D+s decay modes (left) before and (right) after updating
the decay table database as described in the text. Note the different scales on the y-axis.



8 Summary and outlook186

EvtGen is an event generator specialised for decays of heavy-flavour hadrons and is an essen-187

tial tool for physics analyses studying such processes. Since its early developments, its core188

framework has been kept almost unchanged. The current transition of experimental frame-189

works into multi-threaded processing has prompted an EvtGen modernisation campaign with190

the goal of implementing thread safety. A first step in this regard has been the implementa-191

tion of a global testing framework to ensure that the physics output remains invariant after192

the modifications.193

We have identified internal and external challenges to be overcome in order to implement194

thread safety. The internal challenges are associated with the structure of the core frame-195

work, which is based on global static objects that can mutate during program execution. Our196

preliminary solution has made those objects either constant or thread local. The external chal-197

lenges are associated with dependencies on third-party generators that are used to simulate198

τ-decays (TAUOLA) and final-state radiation (PHOTOS) which are not yet thread safe. We199

have temporarily serialised their use by deploying the C++ mutex functionality. However,200

these external dependencies remain the limiting factor. We are therefore exploring alterna-201

tives for the simulation of τ-decays and final-state radiation.202

We have found and implemented a set of preliminary solutions that are necessary to enable203

thread safety. The modernisation campaign has allowed us to identify further possibilities for204

improvements, which imply code redesign and general modifications, offering opportunities205

for future developments.206

9 Acknowledgements207

We thank Heather Ratcliffe and Christopher Brady at the University of Warwick for helping208

us identify and implement the modifications needed to make EvtGen thread safe. We also209

thank the Monash-Warwick Alliance in Particle Physics (MWAPP) for its support.210

References211

[1] D. J. Lange, NIM A462, 152 (2001)212

[2] T. Sjöstrand, S. Mrenna, and P. Skands, CPC 178 852 (2008), arXiv:0710.3820213

[3] S. Jadach, J.H. Kuhn, and Z. Was, CPC 64 275 (1990)214

[4] M. Jezabek et al, CPC 70 69 (1992)215

[5] S. Jadach et al, CPC 76 361 (1993)216

[6] M. Chrzaszcz et al, CPC 232 220 (2018), arXiv:1609.04617.217

[7] N. Davidson, T. Przedzinski, and Z. Was, CPC 199 86 (2016), arXiv:1011.0937218

[8] T. Bray, IETF RFC 8259 (2017), rfc:8259219

[9] M. Dobbs and J. B. Hansen, CPC 134 41 (2001), ATL-SOFT-2000-001220

[10] M. Schonherr et al, JHEP 12 018 (2008), arXiv:0810.5071221

[11] T. Gleisberg et al, JHEP 02 056 (2004), arXiv:0311263222

[12] R. L. Workman et al [PDG], PTEP 2002 083C01 (2002), Review of particle physics223

https://arxiv.org/abs/0710.3820
https://arxiv.org/abs/1609.04617
https://arxiv.org/abs/1011.0937
https://www.rfc-editor.org/info/rfc8259
http://cds.cern.ch/record/684090
https://arxiv.org/abs/0810.5071
https://arxiv.org/abs/hep-ph/0311263
http://pdg.lbl.gov/

	Introduction
	Testing framework
	Making EvtGen thread safe
	Simulation of tau decays
	Simulation of final-state radiation
	Improving multi-threaded performance
	Updating the decay table branching fractions
	Summary and outlook
	Acknowledgements

