
Generalizing mkFit and its Application to HL-LHC1

Giuseppe Cerati4, Peter Elmer2, Patrick Gartung4, Leonardo Giannini1, Matti Kortelainen4,2

Vyacheslav Krutelyov1, Steven Lantz3, Mario Masciovecchio1, Tres Reid3, Allison Reinsvold3

Hall5, Daniel Riley3, Matevž Tadel1,*, Emmanouil Vourliotis1, Peter Wittich3, and Avi4

Yagil1on behalf of the CMS collaboration5

1UC San Diego, La Jolla, CA, USA 920936

2Princeton University, Princeton, NJ, USA 085447

3Cornell University, Ithaca, NY, USA 148538

4Fermilab, Batavia, IL, USA 60510-50119

5US Naval Academy, Annapolis, MD, USA 2140210

Abstract. mkFit is an implementation of the Kalman filter-based track recon-11

struction algorithm that exploits both thread- and data-level parallelism. In the12

past few years the project transitioned from the R&D phase to deployment in the13

Run-3 offline workflow of the CMS experiment. The CMS tracking performs14

a series of iterations, targeting reconstruction of tracks of increasing difficulty15

after removing hits associated to tracks found in previous iterations. mkFit16

has been adopted for several of the tracking iterations, which contribute to the17

majority of reconstructed tracks. When tested in the standard conditions for18

production jobs, speedups in track pattern recognition are on average of the or-19

der of 3.5x for the iterations where it is used (3-7x depending on the iteration).20

Multiple factors contribute to the observed speedups, including vectorization21

and a lightweight geometry description, as well as improved memory manage-22

ment and single precision. Efficient vectorization is achieved with both the icc23

and the gcc (default in CMSSW) compilers and relies on a dedicated library24

for small matrix operations, Matriplex, which has recently been released in a25

public repository. While the mkFit geometry description already featured lev-26

els of abstraction from the actual Phase-1 CMS tracker, several components of27

the implementations were still tied to that specific geometry. We have further28

generalized the geometry description and the configuration of the run-time pa-29

rameters, in order to enable support for the Phase-2 upgraded tracker geometry30

for the HL-LHC and potentially other detector configurations. The implemen-31

tation strategy and high-level code changes required for the HL-LHC geometry32

are presented. Speedups in track building from mkFit imply that track fitting33

becomes a comparably time consuming step of the tracking chain. Prospects34

for an mkFit implementation of the track fit are also discussed.35

1 Introduction36

The mkFit project was started in 2014 with the goal of exploring how the traditional Kalman37

filter based track fitting and track finding [1] can be rethought and optimized in the age of – at38

*e-mail: mtadel@ucsd.edu

that time, novel – many-core, vectorized computing architectures. After initial positive results39

on simplified detector geometries the focus was shifted to applying the mkFit algorithm to40

silicon detector track finding for the CMS experiment [2], resulting in a viable prototype in41

2018 and culminating in a final one-year integration and validation campaign in 2021. Since42

the beginning of LHC Run3 in 2022 [3], mkFit is used by CMS to reconstruct five out of43

twelve tracking iterations covering 90% of found tracks with pT > 0.5 GeV/c. An in-depth44

review of mkFit, including detailed motivation and algorithm description, has been published45

[4]. An overview of early work with further references can be found in [5] and physics46

performance of mkFit in CMS Run3 is available as a CMS Detector Performance note [6].47

This paper focuses on improvements and extensions of mkFit that were required to sup-48

port running of multiple tracking iterations in CMS software (CMSSW) as well as to prepare49

it for implementation of tracking after the Phase-2 detector upgrades expected around 2030,50

in the High Luminosity LHC (HL-LHC) era. Section 2 introduces how mkFit is structured51

and run within CMSSW. A detailed presentation of required generalizations of geometry de-52

scription, configuration and steering systems is given in section 3. Currently ongoing and53

planned or possible future work is discussed in section 4.54

2 mkFit in CMSSW55

mkFit was initially developed as a standalone tracking library and at first included into56

CMSSW as an external package. This mode of operation was used for development, physics57

performance tuning and benchmarking. However, one of the conditions for using mkFit in58

production was for the code to be incorporated into the core CMSSW distribution, to make59

the software building, configuration, and patching for online and offline use compatible with60

CMS’s requirements for computing operations. This section discusses the high-level code61

structure of mkFit in CMSSW; outlines steps performed by mkFit in a typical CMSSW recon-62

struction job; and, finally, presents some highlights of physics and computing performance.63

2.1 Code structure64

mkFit code is structured into three CMSSW packages:65

• MkFitCore holds the central components of mkFit, including all computational algorithms,66

internal data formats and geometry description, as well as configuration structures and re-67

lated processing code. This core package is independent of any experiment or geometry68

details. It does not depend on or interact directly with any CMSSW modules or data for-69

mats.70

• MkFitCMS contains helper algorithms, called standard functions, that perform specific tasks71

during track finding: seed pre-processing, candidate scoring, candidate filtering, and du-72

plicate removal. These codes use mkFit internal data formats and still do not depend on73

CMSSW.74

• MkFit is the actual bridge between mkFit and CMSSW. It defines the CMSSW producer75

modules for both configuration and data-processing. It uses CMSSW specific mechanisms76

to pull in configuration and event-data, transforms them into mkFit internal structures and77

calls appropriate steering functions. It depends both on MkFitCore (data-formats and ge-78

ometry) and MkFitCMS (steering and standard functions) packages.79

Standalone operation of mkFit is still possible and is frequently used for validation, tun-80

ing, development, and debugging. To support this mode, packages MkFitCore and MkFitCMS81

contain additional code and makefiles in sub-directory standalone/ that is not used by82

CMSSW build or touched by CMSSW code managements tools. This allows for keeping83

all mkFit related files stored in a single repository. A minimal additional repository with ex-84

ternal packages that would otherwise be used from CMSSW or CMSSW’s external software85

still needs to be maintained separately for standalone builds.186

2.2 Track finding algorithm87

Details of CMS track reconstruction and iterative tracking can be found in [7]. Here we are88

concerned with processing as it occurs for every iteration after the seed tracks have been89

found. Input to track finding is a vector of seed tracks, each consisting of a list of associated90

hits and the initial estimate of the track parameters at the final, outermost point. After that,91

mkFit processing steps are as follows:92

1. Seed cleaning is performed. As mkFit processes seeds in parallel it can not rely on hit93

masking in order to exclude seeds whose hits have already been consumed by previ-94

ously found tracks.95

2. Seed partitioning reshuffles the seeds into tracking regions (barrel, transition, and end-96

cap). Those define the sequence in which detector layers will be visited. Additionally,97

the seeds are sorted in η, φ-space to improve hit access coherency during later steps.98

3. Forward search proceeds through the detector layers for the given tracking region going99

outwards from the seeding layers. For each seed, combinatorial search with a limit on100

the maximum concurrent number of candidates is performed, adding new hits on each101

layer while allowing for a limited number of missed layers and a single additional102

“detector overlap” hit. At the end, either because the edge of the tracker is reached103

or because no more new hits are found, the best-scoring candidate is chosen as the104

representative. Optionally, a quality filter can be applied before the next step.105

4. Backward fit re-traverses each found track backwards, refitting the track parameters.106

If the seeding region for the current iteration does not extend all the way to the vertex107

region, a combinatorial backward search can also be performed, going inwards from108

the first known hit.2 Again, the search is stopped when the innermost layers of the109

detector have been reached or if no new hits are found for a given seed. If the search110

has been performed, the best candidate is chosen as the final representative.111

5. Quality filtering & duplicate removal are performed on the resulting tracks.112

After the track finding for each iteration is complete, two more steps are performed by113

other CMSSW modules: final fit including outlier rejection; and final quality selection, based114

on a multivariate algorithm.115

In standalone operation, the same mkFit processing steps are performed. Pre-processed116

input seeds and hit data are read from a custom binary file. Final fit and quality selection are117

not performed, but there is a standalone version of validation comparing the found tracks to118

simulated ones.119

2.3 Physics and computational performance120

Here we present two highlights from the CMS Detector Performance note [6].3 Both cases121

compare relevant quantities before and after the inclusion of mkFit in the standard Run3 track122

reconstruction of simulated tt̄ events with an average pile-up of 65.123

1https://github.com/trackreco/mkFit-external
2Optionally, some or all of the seed-region hits can be dropped and new hits searched for in the seeding layers

as well.
3In this note mkFit has also been used for PixelLess iteration that was later removed due to poor performance

for low-momentum highly displaced tracks.

Figure 1. Comparison of physics performance of legacy track reconstruction (red markers) and the new
Run3 tracking configuration where mkFit is used for 6 of twelve tracking iterations (black markers):
From left-to-right: a) tracking efficiency, b) fake rate, and c) duplicate rate.

Figure 1 shows comparisons of basic physics performance markers. Tracking efficiency124

is comparable overall; efficiency vs. η (not shown) indicates small gains in the endcap region125

(2.4 < |η| < 2.8). Fake rate is improved overall with reduction improving with increasing126

|η|. Duplicate rate is slightly increased but has been subsequently improved with further127

iteration-specific tuning of the duplicate removal algorithm.128

Figure 2. Comparison of computational performance of legacy track reconstruction (red markers) and
the new Run3 tracking configuration where mkFit is used for 6 of twelve tracking iterations (black
markers). Plots show relative times of tracking steps for (left) iterations that use mkFit and (right) all
iterations.

Vectorization and threading scaling tests for initial iteration imply that, according to Am-129

dahl’s Law, ~70% of operations are vectorized and that more than 95% of code is effectively130

parallelized. Computational speedups when using mkFit are shown in figure 2. For all iter-131

ations where mkFit is used, the observed track building time is reduced by ~3.5x (the best132

observed reduction for one mkFit iteration is 6.7x). Note that track building with mkFit takes133

less time than seeding, and about the same time as the final fit.134

When all iterations, including non-mkFit based ones, are considered the building time135

is reduced by ~1.7x. This translates to a 25% reduction of total tracking time (including136

seeding, and final fit) and, overall, results in a 10-15% increase of Run3 reconstruction job137

event throughput.138

3 Generalizations for iterative tracking & HL-LHC139

CMSSW is a multi-threaded, module-based event processing framework that instantiates and140

runs modules as well as manages data sources (both event data and longer-lived data products)141

according to the dependencies generated by the modules themselves when the job configu-142

ration is processed. As such, each module can be instantiated multiple times and associated143

with different configurations and data-sources, including parallel processing of several events.144

This requires complete separability of configuration and module instance state as well as com-145

plete absence of any non-constant global state. Further, in the mkFit case, each iteration has146

its own set of parameters that control and steer the functioning of core tracking algorithms as147

well as separate implementations of standard functions, as mentioned in section 2.1.148

While basic, algorithmic modifications had to be made to make mkFit conform to the149

iterative tracking of CMSSW — i.e., to support forward search, backward fit, and backward150

search — the majority of these changes amounted to generalizations of the algorithms, along151

with mechanisms for expressing different modes of behavior through configuration structures152

and intermediate-level code that steers the algorithms. The previous section dealt with how153

the code is structured and how it operates; this section addresses the design of configuration154

structures and associated processing that allows the core of the code, which is independent of155

experiment and geometry, to run in accordance with the given detector description, algorithm156

tuning, and required standard functions.157

3.1 Geometry & detector description158

In mkFit terminology a layer denotes an r− z bounding box in global cylindrical space where159

hits belonging to the said layer are expected to be found. It usually corresponds in some way160

to detector construction or readout layers, but it does not have to:4 its main purposes are to161

aggregate the hits, provide an easy way to specify layer crossing sequences for each tracking162

region (called a layer plan), and allow track search to proceed uniformly among a set of163

tracks. This reduces complexity and allows for the vectorization of certain key computations,164

including track candidate propagation, hit selection, and Kalman filter calculations.165

Prior to CMSSW integration, logically dividing CMS into nested layers was sufficient166

to allow mkFit to roughly reproduce the physics performance of CMSSW legacy tracking.167

However, as mkFit was being considered a drop-in replacement for the existing tracking168

implementation, additional detector-module identification had to be included in mkFit’s ge-169

ometry description to enable it to pick up multiple hits from overlapping modules within170

the same layer. Moreover, to support the Phase-2 upgrade geometry, which includes axially171

tilted detector modules, further information had to be provided (module position, normal and172

φ-direction vectors).173

The layer boundaries, module details, and material properties are all extracted during174

the CMSSW job setup by traversing all inner tracker modules. For standalone usage this175

information gets exported into a binary file.176

3.2 Configuration structures177

As mentioned in the introduction to this section, mkFit code needs to run concurrently within178

the main process, where each execution module is configured for its specific tracking iter-179

ation. As there can be no static or global data, the required configuration (or the relevant180

fragments) needs to be passed down the execution stack or stored in local objects. It is there-181

fore important that the configuration data are structured in a way to facilitate such usage.182

4E.g., mono and stereo hits from the same silicon-strip detector layer in CMS are split into separate mkFit layers.

The top-level configuration for each tracking iteration is represented by the class183

IterationConfig. It contains flags that control which steps of the track finding algorithm184

(see section 2.2) need to be performed, the standard functions that are to be used for this iter-185

ation (described in more detail in the next subsection), some high-level parameters for seed186

and duplicate cleaning, and the following structures.187

• Layer traversal plans for all tracking regions.188

• Tracking parameters (e.g., maximum number of missed layers, χ2 cuts, quality filter pa-189

rameters) encapsulated in class IterationParams, with two separate instances for forward190

and backward search.191

• Iteration-specific layer information, stored in class IterationLayerConfig, which holds192

parameters guiding hit search and selection algorithms. These are stored in a vector, with193

one instance per layer.194

The CMSSW module system is typically configured via Python scripts; this requires a195

rather tight coupling at the level of C++ code to parse incoming data. As the above mkFit196

configuration is rather elaborate, it was accepted as a compromise that all mkFit configuration197

can be loaded from (and saved into) JSON files. Each iteration’s configuration is stored in a198

separate file (stored as a part of CMSSW release) and the name of this file is then passed to199

the mkFit CMSSW module during instantiation.200

To allow for an easy modification of a small number of parameters, reading of partial201

JSON overrides is fully supported: the default base configuration is read from the CMSSW202

release and then existing in-memory representation gets patched or overridden via simple203

additional JSON files or strings. Some frequently used parameters can also be set via the204

Python interface, e.g., to tune mkFit performance for heavy-ion operations.205

Plugin-style configuration is still supported in standalone mode and is, in fact, used to206

generate the default JSON files for the CMSSW operation.207

3.3 Standard function catalogs208

While adding support for multiple iterations and for Phase-2 tracking it became obvious that209

using a single standard function and putting additional parameters into IterationConfig210

structure does not scale and that a more flexible configuration mechanism for standard func-211

tions is required for the following tasks:212

• seed cleaning & partitioning – defined per iteration;213

• candidate filters, pre- and post-backward fit – defined per iteration;214

• duplicate cleaning – defined per iteration; and215

• candidate scoring – defined per iteration with a possible override for each tracking region.216

To provide a mechanism for registering different, specialized implementations of these217

standard functions, and to be able to choose them at configuration time, standard function218

catalogs have been introduced. For each type of function above, a thread-safe catalog with219

string keys and std::function value type is provided. The catalogs are populated via static220

object initializers in source files that contain the standard function codes. As std::function221

objects are exported, the functions themselves can be hidden in anonymous namespaces.222

Further, function templates can be used to inject compile-time parameters and, in simple223

cases, the registered functions can be direct lambda expressions.224

With this infrastructure in place, JSON files can simply specify the names (strings) as-225

sociated in the catalog with the desired function. After configuration loading and setup is226

complete the names get resolved into std::function objects for fast access and become227

available through the IterationConfig structure.228

4 Ongoing & future work229

At present, the described changes are being used to further tune Phase-1 CMS iterations.230

Algorithmic improvements in the processing of layers and multi-layer scoring are being in-231

vestigated, with the goal of extending the usage of mkFit beyond the current five tracking it-232

erations, as well as improving computational performance for currently supported use-cases.233

In parallel, Phase-2 tracking is being developed, currently still focusing on a single, initial234

tracking iteration, while the specifics of track propagation and Kalman updates required for235

the support of tilted modules are being worked out.236

The final fit is now the most time-consuming tracking task in iterations using mkFit. With237

the latest additions to geometry description, it should be feasible to effectively use mkFit for238

this task as well, and we are investigating the required developments in this area, along with239

possible improvements to existing backward-fit and backward-search algorithms.240

There has been a recent intense development of CMS Phase-2 Line Segment Tracking241

(LST) [8, 9], a highly parallelizable algorithm that can run efficiently on GPUs, which is242

showing great promise for both offline and high-level trigger usage. We are planning to243

explore possible synergetic development with the LST project, aiming for a hybrid approach244

where LST performs the initial, fast track finding and mkFit provides final steps such as245

backward fit, overlap hit search, and final fitting.246

5 Conclusion247

mkFit is in production mode for the CMS experiment since Run3 of the LHC, used as a drop-248

in replacement for the legacy tracking code for five out of twelve iterations, with equivalent249

physics performance and with overall tracking time reduction of ~25%. Work has started to250

support CMS Phase-2 tracking geometry and events with increased pileup, where some of re-251

quired changes are described in this paper, namely: generalizations of geometry description,252

multi-iteration configuration, and introduction of catalogs of standard functions. Exploration253

of extending mkFit to also cover the final-fit and to operate synergistically with other track254

finding algorithms is in progress.255

Acknowledgements256

This work was supported by the U.S. National Science Foundation under Cooperative Agreements257

OAC-1836650 and PHY-2121686 and grant NSF-PHY-1912813.258

References259

[1] R. Frühwirth, Application of Kalman filtering to track and vertex fitting, Nucl. Instrum.260

Meth. A262, 440–450 (1987)261

[2] CMS Collaboration, The CMS experiment at the CERN LHC JINST 3, S08004 (2008)262

[3] CMS Collaboration, Development of the CMS detector for the CERN LHC Run 3,263

arXiv:2309.05466 [physics.ins-det] (2023) https://arxiv.org/abs/2309.05466264

[4] S. Lantz et al., Speeding up particle track reconstruction using a parallel Kalman filter265

algorithm, JINST 15, P09030 (2020)266

[5] G. Cerati et al., Parallelized and Vectorized Tracking Using Kalman Filters with CMS267

Detector Geometry and Events, EPJ Web of Conferences 214, 02002 (2019)268

[6] CMS Collaboration, Performance of Run 3 track reconstruction with the mkFit algorithm,269

CERN-CMS-DP-2022-018 (2022) https://cds.cern.ch/record/2814000270

[7] CMS collaboration, Description and performance of track and primary-vertex recon-271

struction with the CMS tracker, JINST 9, P10009 (2014) [arXiv:1405.6569]272

[8] P. Chang et al., Line Segment Tracking in the High-luminosity LHC, in these proceedings273

[9] CMS Collaboration, Performance of Line Segment Tracking algorithm at HL-LHC,274

CERN-CMS-DP-2023-019 (2023) https://cds.cern.ch/record/2857438275

