
Offline Data Processing Software for the Super Tau Charm
Facility

Teng Li1,∗, Wenhao Huang1, Xingtao Huang1,∗∗, Xiaocong Ai2,∗∗∗, He Li3, and Dong Liu3

1Key Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of Frontier and Interdis-
ciplinary Science, Shandong University, Qingdao, Shandong, 266327, China

2School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan, 450001, China
3University of Science and Technology of China, Hefei, 230026, China

Abstract. The Super Tau Charm Facility (STCF) proposed in China is a new-
generation electron–positron collider with center-of-mass energies covering 2-7
GeV and a peak luminosity of 0.5×1035 cm−2 s−1. The offline software of STCF
(OSCAR) is developed to support the offline data processing, including detec-
tor simulation, reconstruction, calibration as well as physics analysis. To meet
STCF’s specific requirements, OSCAR is designed and developed based on the
SNiPER framework, a lightweight common software for HEP experiments. Be-
sides the commonly used software such as Geant4 and ROOT, several state-of-
the-art software packages and tools in the HEP community are incorporated as
well, such as the Detector Description Toolkit (DD4hep), the plain-old-data I/O
(podio) and Intel Thread Building Blocks (TBB) etc. This paper will present
the overall design as well as some implementation details of OSCAR, including
the event data management, paralleled data processing based on SNiPER and
TBB as well as the geometry management system based on DD4hep. Currently,
OSCAR is fully functioning to facilitate the conceptual design of the STCF de-
tector and the study of its physics potential.

1 Introduction

The Super Tau-Charm Facility (STCF) [1, 2] is an electron-positron collider proposed with
the center-of-mass energy ranging from 2 to 7 GeV, the transition region between perturbative
and non-perturbative quantum chromodynamics. The peak luminosity of STCF is designed
to be at 0.5×1035 cm−2 s−1, which is almost two orders of magnitude higher than the present
Tau-Charm factory in China. STCF is designed to study tau-charm physics, hadron physics
as well as searching new physics beyond the Standard Model. The offline software of STCF
(OSCAR) [3] is developed to facilitate the offline data processing tasks, including the produc-
tion of Monte-Carlo simulation data, calibration and reconstruction of collected data, as well
as helping physicists to conduct physics analysis, etc. To overcome the great challenges posed
by the high luminosity of STCF, the OSCAR system is carefully designed and implemented
to provide excellent performance for offline data processing tasks.

∗e-mail: tengli@sdu.edu.cn
∗∗e-mail: huangxt@sdu.edu.cn
∗∗∗e-mail: xiaocongai@zzu.edu.cn



The overall architecture of OSCAR is shown in Figure 1. The OSCAR system is com-
posed of three layers: the bottom layer includes some commonly used libraries and interfaces
to the frequently used software and tools in the HEP community, such as ROOT [4], Geant4
[5], as well as some of the Common Turnkey Software Stack (Key4hep) [6], such as podio
[7] and DD4hep [8]. The core software layer includes the underlying framework, and other
common components used in offline data processing, such as the event data model (EDM),
event data and detector data management systems, providing key and common functionalities
for the offline software. The application layer includes the STCF-specific applications, such
as the implementation of physics generators, detector simulation, digitization, reconstruction
etc.

(a) (b)

Figure 1: (a) Schematic layout of the STCF detector. (b) Overview of the OSCAR system.

This paper aims to introduce the design and implementation of the OSCAR system briefly.
Section 2 gives brief introduction of the underlying framework. In section 3, the event data
and detector data management will be described. In section 4, we introduce the design and
performance test of the paralleled detector simulation software. Finally, section 5 summarizes
the current status and gives an outlook on the development of OSCAR.

2 Underlying framework

The OSCAR system is implemented based on SNiPER [9] as the underlying framework,
which implements fundamental functionalities such as the event loop control, job configura-
tion, multi-thread support, logging, job configuration etc. SNiPER also provides interfaces
for developers to implement specific algorithms and services.

SNiPER is a lightweight software framework, initially developed and optimized for non-
collider experiments (such as JUNO [10] and LHAASO [11]), and was then adopted to col-
lider experiments as well. The main advantages provided by SNiPER include its lightweight
design and implementation, flexible event processing sequence control, flexible data manage-
ment and the powerful parallel computing support. In SNiPER, the basic execution unit is
named as task, as shown in Figure 2 (a). A SNiPER task is a thin wrapper of the algorithms
and services, where developers can plug-in their code to fulfill data processing tasks. To
enhance SNiPER’s flexibility, in each SNiPER job multiple task instances could be created,



each with a different sets of algorithms and services, and with an independent input/output
stream. In each SNiPER job, users could define a top-level task which takes the primary event
loop, and trigger other tasks on demand, as shown in Figure 2 (b). With such features, com-
plex applications can be easily implemented, such as mixing different kinds of backgrounds
with asynchronous event rates, triggering different processing chains for different kinds of
physics signals, or analysing data coming from multiple input streams etc.

(a) (b)

Figure 2: (a) Design of SNiPER Task. (b) Nested execution sequence of Tasks.

SNiPER also takes advantage of the multi-task mechanism to implement event-level mul-
tithreading applications based on Intel TBB [12]. In the multithreading mode of execution,
the ordinary event loop is broken up by the SNiPER Muster (Multiple SNiPER Task Sched-
uler) [13], which uses the Intel’s TBB’s scheduler. As shown in Figure 3, the Muster works
as a thread pool, and is in charge of the creation and scheduling of multiple workers. In each
worker, one SNiPER task instance is created and mapped to an Intel TBB task, executed in
one thread concurrently. When a task is invoked, it grabs and locks an event from the central
event pool (GlobalStore) until the execution of the task holding this event is completed.

Figure 3: The concurrent execution of the SNiPER job.

To simplify the implementation of data I/O and memory management, the I/O services
are configured in dedicated I/O tasks (threads). During execution, the input task always try
to fill the GlobalStore until there is no empty slot, while the output task always try to write
out processed events. Such design is in particular useful for experiments that require the
sequence the event data to remain fixed all the time during offline processing (e.g. neutrino
experiments that have time-correlated triggers). The memory management functionalities is



achieved by the GlobalStore, which is designed based on podio::EventStore, and is capable
of caching multiple events during execution. The implementation details of GlobalStore will
be discussed in the next section.

3 Event data and detector data management

3.1 Event data management

The EDM lies at the heart of the OSCAR system. It not only defines the transient and persis-
tent format of event data, but also defines the relationships between event objects in different
processing stages, and provides interfaces for various application algorithms during the of-
fline processing.

The traditional EDM for HEP experiments has been predominantly object-oriented with
complicated hierarchical structures. While these designs have effectively encapsulated event
information and played crucial roles in the past, they are not well suited for future experiments
with higher data rates and stronger demand for paralleled data processing. To implement ef-
fective EDM and data I/O for future HEP experiments, the Key4hep project has developed
podio that serves as a common tool to define EDM based on plain-old-data structures, offer-
ing highly efficient I/O performance as well as robust support for parallel computing. The
EDM in the OSCAR system is developed based on podio, so that the event information and
relationships between different event data objects are described in yaml files, which are then
used to automatically generate C++ code for all EDM classes.

Currently, the EDM classes for MC simulation and reconstruction are defined for the
STCF detector, as shown in Figure 4. The MCParticle and ReconstructedParticle are designed
as the core index for MC and reconstructed data, respectively. Specific classes for the tracker
system, electromagnetic calorimeter, PID detectors and muon detectors are defined. The
arrows in the figure denote the "one to one" or "one to many" relationship between these
classes. The MCParticle and ReconstructedParticle classes are correlated based on a track
matching algorithm, bridging the MC and reconstructed data.

Figure 4: The design of OSCAR EDM.



The event data management system manages event data in memory (transient EDM ob-
jects and collections), provides interfaces for user applications and handles the data I/O. As
both the SNiPER framework and podio have independent implementation of the data man-
agement functionalities, in OSCAR we integrate them by implementing a few services, in-
cluding PodioDataSvc that connects the podio::EventStore with SNiPER, PodioInputSvc and
PodioOutputSvc that connect podio::ROOTReader and podio::ROOTWriter as well as the
DataHandle serving as the interface for retrieving event data. Figure 5 shows how these com-
ponents work together with the user algorithms. Under such design, the event data and user
application are completely decoupled.

Figure 5: The design of OSCAR event data management

One of the biggest challenges of the event data management system is to fullfill the paral-
lel computing requirements. To enable parallel data processing, the GlobalStore (as shown in
Figure 6) is developed. The GlobalStore is designed based on the podio::EventStore to cache
multiple events, each within one data slot. To guarantee thread safety, several condition locks
are implemented to enable exchanging data safely between workers. As introduced in the
previous section, I/O services are bound to dedicated I/O threads, to ensure performance and
flexible post- or pre-processing. During concurrent execution, the input thread always tries to
fill the GlobalStore, the output thread always tries to write out processed events, while each
worker retrieves and locks one event each time before it is processed.

Figure 6: The design of GlobalStore



3.2 Detector data management

The detector data, including the detector geometry, material, detector readout as well as de-
tector conditions data such as detector alignment, calibration parameters are vital during the
entire offline data processing. To effectively manage these detector data and provide straight-
forward interfaces for applications, the geometry management system (GMS) [14] is devel-
oped, as one of the core components of the OSCAR system. To make sure all applications,
including the detector, digitization, calibration, reconstruction and event visualization share
consistency geometry definitions, the GMS is developed based on DD4hep that uses a sin-
gle source of all detector data. In GMS, the definition of basic elements and materials is
shared, while each sub-detector is defined in a single XML file. Each sub-detector can have
an independent version number, and the full detector is defined in a mother XML file as a
composition, in order to support flexible switch between different detector design schemes.

(a) (b)

Figure 7: (a) Detectors repository in GMS. (b) Data flow of geometry information managed
with GeometrySvc.

To integrate DD4hep with SNiPER, the GeometrySvc is developed as a manager of all
detector data. During initialization, the detector geometry defined in XML files will be parsed
and delivered via various plugins of DD4hep on demand. For instance, geometry is delivered
to DDG4 to transfer the geometry to Geant4, to DDRec for the reconstruction algorithms, and
to DDEve for detector and event visualization. With such implementations, the entire STCF
detector is implemented to support current detector simulation and reconstruction algorithms.

4 Detector simulation framework

Generating MC simulated data is one of the primary tasks of OSCAR. To integrate SNiPER,
Geant4 and the GMS, a modularised detector simulation framework is implemented for de-
velopers to flexibly develop modules such as generator interfaces, physics interaction lists,
user-defined actions as well as fast simulation models.

The design of the detector simulation framework is shown in Figure 8 (a). In order to
implement inter-event parallelism, the Geant4 related components are divided into two cate-
gories. The DetectorConstruction that constructs the detector geometry via the GeometrySvc
and the PhysicsList are created in the global task, which are shared by all workers. The
physics generator, sensitive detectors as well as user-defined action code are possessed by
each worker. Under such design, users can run detector simulation serially or concurrently
by just changing job configurations. Figure 8 (b) shows the result of some performance tests,
obtained by concurrently simulating muon particles. By comparing the relative speed-up and



averaged memory consumption, we can clear see the system works as expected and shows a
good scale-up capability.

(a) (b)

Figure 8: (a) Design of the parallel detector simulation framework. (b) Performance test of
paralleled detector simulation.

5 Summary

In this paper, we introduce the design and implementation of the OSCAR system, the of-
fline data processing software of the STCF experiment. OSCAR is developed fully based
on SNiPER and partially based on Key4hep. To build efficient and powerful event data and
detector data management systems, several tools developed for future collider experiments
are adopted, such as podio and DD4hep. In the past years, the full detector simulation and
reconstruction chain were built on top of OSCAR, and the latest update has enabled efficient
paralleled detector simulation software. OSCAR is still under rapid development to enhance
the functionality and performance. We hope the design of OSCAR can potentially provide
solutions for other lightweight HEP experiments.

6 Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) under
Contracts Nos. 12025502, 12105158, 12175124.

References

[1] H.P. Peng, Y.H. Zheng, X.R. Zhou, Physics 49, 513 (2020)
[2] M. Achasov et al. (2023), arXiv:2303.15790
[3] W.H. Huang, H. Li, H. Zhou, T. Li, Q.Y. Li, X.T. Huang, JINST 18, P03004 (2023),
arXiv:2211.03137

[4] R. Brun, F. Rademakers, Nucl. Instrum. Meth. A 389, 81 (1997)
[5] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A 506, 250 (2003)



[6] G. Ganis, C. Helsens, V. Völkl, Eur. Phys. J. Plus 137, 149 (2022), arXiv:2111.09874
[7] F. Gaede, G. Ganis, B. Hegner, C. Helsens, T. Madlener, A. Sailer, G.A. Stewart,

V. Volkl, J. Wang, EPJ Web Conf. 251, 03026 (2021)
[8] F. Gaede, M. Frank, M. Petric, A. Sailer, EPJ Web Conf. 245, 02004 (2020)
[9] J.H. Zou, X.T. Huang, W.D. Li, T. Lin, T. Li, K. Zhang, Z.Y. Deng, G.F. Cao, J. Phys.

Conf. Ser. 664, 072053 (2015)
[10] Z. Djurcic et al. (JUNO) (2015), arXiv:1508.07166
[11] X.H. Ma, Y.J. Bi, Z. Cao, M.J. Chen, S.Z. Chen, Y.D. Cheng, G.H. Gong, M.H. Gu,

H.H. He, C. Hou et al., Chinese Physics C 46, 030001 (2022)
[12] C. Pheatt, Journal of Computing Sciences in Colleges 23, 298 (2008)
[13] J.H. Zou, T. Lin, W.D. Li, X.T. Huang, T. Li, Z.Y. Deng, G.F. Cao, Z.Y. You, J. Phys.

Conf. Ser. 1085, 032009 (2018)
[14] H. Li, W.H. Huang, D. Liu, Y. Song, M. Shao, X.T. Huang, JINST 16, T04004 (2021)


