
Optimizing ATLAS data storage: the impact of compres-
sion algorithms on ATLAS physics analysis data formats

Caterina Marcon1,∗, Alaettin Serhan Mete2,∗∗, Peter Van Gemmeren2, and Leonardo
Carminati1

1INFN Milano
2Argonne National Laboratory

Abstract. The increased footprint foreseen for Run-3 and HL-LHC data will
soon expose the limits of currently available storage and CPU resources. Data
formats are already optimized according to the processing chain for which they
are designed. ATLAS events are stored in ROOT-based reconstruction output
files called Analysis Object Data (AOD), which are then processed within the
derivation framework to produce Derived AOD (DAOD) files. Numerous DAOD
formats, tailored for specific physics and performance groups, have been in use
throughout the ATLAS Run-2 phase. In view of Run-3, ATLAS has changed
its analysis model, which entailed a significant reduction of the existing DAOD
flavors. Two new formats, unfiltered, skimmable on read and designed to meet
the requirements of the majority of the analysis workflows, have been proposed
as replacements: DAOD_PHYS and DAOD_PHYSLITE, a smaller format contain-
ing already calibrated physics objects. As ROOT-based formats, they natively
support four lossless compression algorithms: lzma, lz4, zlib and zstd. In
this study, the effects of different compression settings on file size, compres-
sion time, compression factor and reading speed are investigated considering
both DAOD_PHYS and DAOD_PHYSLITE formats. Moreover, the impact of the
AutoFlush parameter controlling how in-memory data structures are serialized
to ROOT files, has been evaluated. This study yields new quantitative results
that can serve as a paradigm on how to make compression decisions for different
ATLAS use cases. As an example, for both DAOD_PHYS and DAOD_PHYSLITE,
the lz4 library exhibits the fastest reading speed, but results in the largest files,
whereas the lzma algorithm provides larger compression factors at the cost of
significantly slower reading speeds. In addition, guidelines for setting appropri-
ate AutoFlush values are outlined.

1 Introduction

Particle physics has an ambitious experimental program for the coming decades: during the
High Luminosity Large Hadron Collider (HL-LHC) phase, scheduled to begin data taking in
2029 [1], events will be delivered and collected at unprecedented rates. Up to 200 interactions
per proton-proton bunch crossing are expected and, by the end of Run-5, an integrated lumi-
nosity five times larger than the combination of all the previous runs will be delivered [1]. The
∗e-mail: caterina.marcon@mi.infn.it
∗∗e-mail: alaettin.serhan.mete@cern.ch

Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



ATLAS experiment [2] expects to record data at 10 kHz, which is approximately ten times
more than during previous runs, and, in addition, a comparable amount of Monte Carlo (MC)
simulated data will be required to prevent simulation-dominated uncertainties. An extrapola-
tion of the present computing model to HL-LHC conditions shows a significant shortfall in
both computational capacity and disk space [1, 3]. In particular, storage will present a signif-
icant issue for HL-LHC computing: if CPU needs will flatten out once the design luminosity
is reached, storage requirements will continue to increase over the lifetime of the HL-LHC.

ATLAS events are stored in ROOT-based [4] reconstruction output files called Analysis
Object Data (AOD), which are then processed within the derivation framework to produce
Derived AOD (DAOD) files. All file types are written in xAOD format with ROOT TTrees as
the underlying data structure. Throughout Run-2 (2015-2018), several DAOD formats tailored
for specific physics and performance groups, have been used. In view of Run-3, to limit
the excessive content overlap between formats and reduce the storage needs, ATLAS is im-
plementing a new analysis model, which entails a significant reduction of the existing DAOD
flavors. Two new formats, unfiltered and skimmable, have been proposed as replacements [5]:

• DAOD_PHYS (∼50 kB/event): this format has been designed to meet the requirements of the
majority of the analysis workflows and is primarily aimed at Run 3 analyses;

• DAOD_PHYSLITE (∼10 kB/event): this is a smaller format containing already calibrated
physics objects and, as a consequence, the variables used to apply the calibrations do
not need to be stored. This format will be used in Run 3 alongside its larger counterpart
DAOD_PHYS and it will be the main format for Run 4.

The term data compression refers to the process of encoding information using fewer bits than
the original representation. There are two different compressions: lossless and lossy. The first
approach aims to reduce bits by identifying and eliminating statistical redundancy without
causing information loss. In this case the process is reversible [6, 7]. The lossy compression,
on the contrary, sacrifices the depth of the data to reduce the footprint for storing, handling
and transmitting content. With this approach, an irreversible compression is applied.

Different lossless compression algorithms are already incorporated in ROOT and, as
ROOT-based formats, both DAOD_PHYS and DAOD_PHYSLITE natively support lossless com-
pression. This study aims to present an in-depth analysis about the impact of ROOT com-
pression algorithms on the two formats. File size, compression time, compression factor and
reading speed have been considered as the metrics for evaluating the effect of the compression
settings. Moreover, the impact of the AutoFlush parameter, able to control how in-memory
data structures are serialized, has been investigated.

2 Methods

ROOT is an open-source data analysis framework mainly written in C++ suitable for handling
and visualizing large amount of data, including large columnar datasets1, used by ATLAS as
well as all LHC experiments.

In ROOT columnar datasets are represented by the TTree object (often simply referred
to as tree) [8]. Data are logically structured in a list of independent columns called branches
and entries (Figure 1). A branch can contain values of any fundamental type (or collections
of those). As shown in Figure 1, data are serialized column-wise into buffers that are kept in
memory until a certain size (that can be specified during branch creation) is reached and then
automatically written to disk. Once the buffer is full, it gets compressed into a basket. To

1A columnar dataset is a database management system optimized to store data in columns. These databases can
efficiently write and read data to and from disk in order to speed up the time required to return a query.



allow more efficient pre-fetching and better chunking of tree data, baskets are grouped into
another structure referred to as cluster.

E
n
tr

ie
s

i 
+

 1
i

i 
- 

1

A B C
Branches

Logical structure

File structure

Figure 1: A simplified representation of the ROOT serialization mechanism [9].

ROOT provides also different mechanisms to control how data are written to ROOT files.
The AutoFlush and SplitLevel mechanisms are particularly relevant to this study since
they can have an impact on the performance of compression algorithms.

The tree can flush data (already structured in baskets) to file once a given cluster size (or
a given number of events) is reached. By default this is done approximately every 30 MB
of compressed data. The AutoFlush parameter specifies how large a single compression
unit of a TTree is in terms of number of events/bytes. If required, TTrees can be structured
in such a way that, for each branch, different sub-branches are created. The recursion level
of nested splitting is called SplitLevel and it is configurable during the branch creation.
Different values can be assigned to the SplitLevel parameter, ranging from 0 (no splitting,
all data stored in the same branch, optimal when class dictionaries [10] are available) to 99,
the default level, where all members at any recursion level are split into native types/attributes
(optimal when dictionaries are not available).

Compression and decompression operations are a ROOT core functionality. Indeed, the
framework provides four different algorithms for lossless compression2: zlib, lzma, lz4,
zstd. These are reversible and already validated in ROOT from a physics standpoint: this
lifts the requirement of a validation phase for this study.

All the algorithms can be tuned via the CompressionLevel option ranging from 1 to 9,
where the latter offers the strongest compression.

The results presented in this paper have been obtained from a representative sample for
the DAOD_PHYS format (tt̄ sample, pre-compression size = 15.92 GB, original AutoFlush
value = 500, original SplitLevel value = 99) and one for the DAOD_PHYSLITE format
(tt̄ sample, pre-compression size = 12.46 GB, original AutoFlush value = 1000, original
SplitLevel value = 99). All calculations are carried out with ROOT 6.24 on a dedicated
CERN standalone machine (Table 1). Each test has been repeated five times and the standard
deviations are of the order of 3% for each test presented. For both formats, compression and
reading tests have been performed on all branches of the CollectionTree, which accounts for
∼90% of the total file size.

The investigations presented in this paper focus on the following aspects:

1. File size vs Compression Level: To estimate the impact of different compression levels
on the file size, a ROOT standalone C++ code has been used. This tool is agnostic
about the specific contents of a given input file: it creates a clone of the input TTree
by mapping input memory addresses to the output object; the compression algorithm,
compression level and AutoFlush of the output file are set according to the user’s

2These compression algorithms refer to the ROOT version 6.24 used throughout this study.



Table 1: Computing resources

CERN standalone machine

CPU 2× AMD EPYC 7302 3.0 GHz

Architecture 64 bit

N. of cores 16

Threads per core 2

Cache L1: 1280 KB, L2: 10.0 MB, L3: 32 MB

RAM 256 GB

Filesystem XFS

Operating system CentOS 7

request and the input TTree is then copied to the output object one entry at a time.
This study has been done keeping the default AutoFlush and SplitLevel parameters
unchanged.

2. Compression time vs Compression Factor: The compression factor is defined as the
ratio between uncompressed and compressed data. The compression time has been
measured with the default time utility of the Linux shell as the total walltime of the
compression process, comprising the initialization of the standalone compression tool
and the whole read/write process of the TTree entries. The time utility does not allow
to separate the actual compression time from the other steps, but it is reasonable to
consider it dominant; indeed, the setup and read instructions are always performed on
the same input file and the only variable left is therefore the compression/writing to
the output file. The default AutoFlush and SplitLevel parameters for both formats
have been left unchanged.

3. Reading speed vs Compression Factor: The reading tests of the compressed files
have been performed within the ATLAS Athena framework, as the reading process
should resemble as closely as possible the actual data analysis workflow. In this con-
text, reading speed is defined as the ratio between bytes read and process time (where
process time is the time spent processing the events). The reading code is already
instrumented to monitor several parameters at runtime without affecting the code per-
formance. This is achieved by sampling the system time before and after each atomic
step and by calculating the resulting ∆t. All the measurements are collected by PerfS-
tats, a tool provided by ROOT, which gives access to a range of performance statistics
from within the process. Metrics are then post-processed and averaged per-event fig-
ures are obtained. For each test presented, a subset of 20000 events has been randomly
read and, for each event, 50% of the variables have been randomly considered. The
study has been done keeping the default AutoFlush and SplitLevel parameters for
both formats unchanged.

4. Impact of AutoFlush on the compression algorithms’ performance: The
AutoFlush parameter specifies how large a single compression unit of a TTree is in
terms of number of events. By default, the AutoFlush for PHYS is set to 500, and
to 1000 for PHYSLITE. For each algorithm, the performance (in terms of file size and
reading speed) has been tested by setting different AutoFlush values. All tests have
been carried out by setting the compression level to 5. The same hardware and software
stack mentioned above has been used for all AutoFlush studies.



3 Results and discussion
3.1 File size vs Compression Level

In Figures 2 and 3 the file size of PHYS and PHYSLITE formats, respectively, has been moni-
tored as a function of different compression levels. In both cases, zstd level 5 has been con-
sidered as a reference since it is the current ATLAS default. For both PHYS and PHYSLITE,
lzma provides the best compression with reductions of ∼ 10% and ∼ 20%, respectively; on
the contrary, lz4 results in the largest files with increases up to 45% for PHYS and almost
50% for PHYSLITE. The file size metric depends primarily on the compression algorithm and
not on the compression level.

Compression level

0

1

2

3

4

5

F
ile

si
ze

 (
G

B
)

Level 1 Level 5 Level 9

zlib zstd lzma lz4

+1
3.

4%

+6
.2

%

+1
.2

%

+5
.8

%

R
ef

.

-3
.3

%

-8
.1

%

-1
1.

9%

-1
3.

4%

+4
7%

+2
6.

4%

+2
4.

3%
Figure 2: File size as a function of different compression levels (DAOD_PHYS format).

Compression level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
ile

si
ze

 (
G

B
)

Level 1 Level 5 Level 9

zlib zstd lzma lz4

+5
.1

%

+3
.8

%

+0
.5

%

+4
.4

3%

R
ef

.

-2
.3

%

-1
8.

7%

-2
2%

-2
3.

2%

+5
1.

5%

+3
8.

6%

+3
7.

3%

Figure 3: File size as a function of different compression levels (DAOD_PHYSLITE format).

3.2 Compression time vs Compression factor

In Figure 4 (PHYS on the left, PHYSLITE on the right), the overall compression time is pre-
sented as a function of the compression factor. A small compression time with a large com-



pression factor would be the ideal configuration. For both configurations, lz4 provides fast
compression times but suffers from low compression factors, whereas lzma achieves high
compression factors but compression times are high. For lzma, zlib, zstd, compression
level 9 exhibits a significant increase in compression time, without gains in compression fac-
tor; this level is only relevant when file size reduction is the most important metric.

4 6 8 10 12
Compression factor

0

1000

2000

3000

4000

C
om

pr
es

si
on

 ti
m

e 
(s

)

zlib zstd lzma lz4

Level 1 Level 5 Level 9

4 6 8 10 12
Compression factor

0

1000

2000

3000

4000

C
om

pr
es

si
on

 ti
m

e 
(s

)

zlib zstd lzma lz4

Level 1 Level 5 Level 9

Figure 4: Compression time as a function of compression factor for PHYS (left) and PHYSLITE
(right).

3.3 Reading speed vs Compression Factor

The reading speed as a function of the compression factor of the different algorithms has been
also monitored for PHYS (Figure 5, left) and PHYSLITE (Figure 5, right). For these metrics
the ideal configuration would be a large reading speed combined with a large compression
factor. For both formats, lzma exhibits a low reading speed while lz4 is the fastest algo-
rithm in reading. For both PHYS and PHYSLITE, the reading speed depends primarily on the
compression algorithm and not on the compression level. The only exception is for the lz4
algorithm: with the PHYSLITE format, the impact of the compression level on the reading
speed is not negligible.

3.4 Impact of AutoFlush on the compression algorithms performance

As mentioned in Section 2, ROOT also provides mechanisms to control how data is written
to files. In Figure 6, the impact of the different algorithms in terms of file size has been
evaluated as a function of different AutoFlush values ranging from 10 to 1000. On the left,
results obtained for the PHYS format are presented, whereas on the right PHYSLITE results are
shown. For both formats, in terms of file size reduction, compression algorithms are more
efficient with more data to compress.

In Figure 7 (PHYS left, PHYSLITE right), the impact of the different algorithms on the
reading speed has been evaluated as a function of different AutoFlush values. For PHYS files
(left), the default AutoFlush value of 500 shows a good performance in terms of file size
as well as reading speed. For PHYSLITE files (right), the original AutoFlush value of 1000
is reasonable, although AutoFlush = 500 shows a slightly better performance in terms of
reading speed.



4 6 8 10 12
Compression factor

20

40

60

80

100

120

R
ea

di
ng

 s
pe

ed
 (

M
B

/s
)

zlib zstd lzma lz4

Level 1 Level 5 Level 9

4 6 8 10 12
Compression factor

20

40

60

80

100

120

R
ea

di
ng

 s
pe

ed
 (

M
B

/s
) zlib zstd lzma lz4

Level 1 Level 5 Level 9

Figure 5: Reading speed as a function of compression factor for PHYS (left) and PHYSLITE
(right).

10 100 1000

Autoflush

2

4

6

8

F
ile

 s
iz

e 
(G

B
)

zlib - Level 5

zstd - Level 5

lzma - Level 5

lz4 - Level 5

10 100 1000

Autoflush

2

4

6

8

F
ile

 s
iz

e 
(G

B
)

zlib - Level 5

zstd - Level 5

lzma - Level 5

lz4 - Level 5

Figure 6: Impact of ROOT compression algorithms in terms of file size as a function of
different AutoFlush values for PHYS (left) and PHYSLITE (right).

4 Conclusions and outlook

The LHC future runs will provide higher luminosity of particle collisions and storage will
present a significant challenge for HL-LHC computing.

Since at the lowest level, ATLAS data is primarily managed using the ROOT analysis
framework, there is an increasing interest in profiling the available lossless compression al-
gorithms.

This study has shown that for both types of derived formats, lz4 is the fastest in reading
but results in the largest files: this compression setting should be considered when fast reading
is more important than file size reduction. For both formats, lzma provides higher compres-
sion at the cost of significantly slower reading speeds: this algorithm should be considered
when file size reduction is the key metric.



10 100 1000
Autoflush

20

40

60

80

100

120

R
ea

di
ng

 s
pe

ed
 p

er
 p

ro
ce

ss
 (

M
B

/s
) zlib - Level 5 zstd - Level 5

lzma - Level 5 lz4 - Level 5

10 100 1000
Autoflush

20

40

60

80

100

120

R
ea

di
ng

 s
pe

ed
 p

er
 p

ro
ce

ss
 (

M
B

/s
) zlib - Level 5 zstd - Level 5

lzma - Level 5 lz4 - Level 5

Figure 7: Impact of ROOT compression algorithms in terms of reading speed as a function
of different AutoFlush values for PHYS (left) and PHYSLITE (right).

For both types of derived files, AutoFlush = 500 could be considered as a good com-
promise, taking into account both file size and reading speed. As a result of this study, the
AutoFlush setting for DAOD_PHYSLITE files has been tuned to 500 events [11].

Studies on memory profiling and partial-event reading are ongoing.

References

[1] ATLAS Collaboration, Tech. rep., CERN (2022), https://cds.cern.ch/record/
2802918

[2] ATLAS Collaboration, JINST 3, S08003 (2008), doi:10.1088/1748-0221/3/08/s08003
[3] J. Albrecht et al., Computing and Software for Big Science 3 (2019),

doi:10.1007/s41781-018-0018-8
[4] R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. De-

tect. Assoc. Equip. 389, 81 (1997), new Computing Techniques in Physics Research V,
doi:https://doi.org/10.1016/S0168-9002(97)00048-X

[5] J. Schaarschmidt, J. Catmore, J. Elmsheuser, L.A. Heinrich, N.E. Krumnack, A.S.
Mete, N. Ozturk (ATLAS), Tech. rep., CERN, Geneva (2023), https://cds.cern.
ch/record/2870350

[6] I.M. Pu, in Fundamental Data Compression, edited by I.M. Pu (Butterworth-
Heinemann, 2006), ISBN 978-0-7506-6310-6

[7] K. Sayood, in Introduction to Data Compression (Fifth Edition), edited by K. Sayood
(Morgan Kaufmann, 2018), ISBN 978-0-12-809474-7

[8] Blomer, Jakob, Canal, Philippe, Naumann, Axel, Piparo, Danilo, EPJ Web Conf. 245,
02030 (2020), doi:10.1051/epjconf/202024502030

[9] O. Shadura, B. Bockelman, Journal of Physics: Conference Series 1525, 012049 (2020),
doi:10.1088/1742-6596/1525/1/012049

[10] I/O of custom classes. (2023), https://root.cern/manual/io_custom_classes/
[11] A. Mete, Update PHYSLITE AutoFlush to 500 events (2023), https://gitlab.cern.

ch/atlas/athena/-/merge_requests/63813

https://cds.cern.ch/record/2802918
https://cds.cern.ch/record/2802918
http://dx.doi.org/10.1088/1748-0221/3/08/s08003
http://dx.doi.org/10.1007/s41781-018-0018-8
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://cds.cern.ch/record/2870350
https://cds.cern.ch/record/2870350
http://dx.doi.org/10.1051/epjconf/202024502030
http://dx.doi.org/10.1088/1742-6596/1525/1/012049
https://root.cern/manual/io_custom_classes/
https://gitlab.cern.ch/atlas/athena/-/merge_requests/63813
https://gitlab.cern.ch/atlas/athena/-/merge_requests/63813

	Introduction
	Methods
	Results and discussion
	File size vs Compression Level
	Compression time vs Compression factor
	Reading speed vs Compression Factor
	Impact of AutoFlush on the compression algorithms performance

	Conclusions and outlook

