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Abstract.
The Circular Electron Positron Collider (CEPC) is a future experiment aimed
at studying the properties of the Higgs boson with high precision. This re-
quires excellent track reconstruction and particle identification (PID) perfor-
mance, which is achieved in the 4th conceptual detector design of the CEPC
experiments by combining a silicon tracker and a drift chamber. The drift cham-
ber not only improves track reconstruction but also provides excellent PID with
the cluster counting method. To evaluate the performance of this design accu-
rately, a detailed simulation is necessary. In this paper, we present a refined
drift chamber simulation by combining Geant4 and Garfield++. However, tra-
ditional waveform simulation using Garfield++ is extremely time-consuming,
which motivates us to develop a fast waveform simulation method using a neural
network. We validate the method using real data from the BESIII experiment.
The results demonstrate the effectiveness of our approach and provide valuable
insights for future experiments.

1 Introduction

The discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments at the LHC
confirmed the predictions of the Standard Model (SM) and demonstrated its tremendous suc-
cess. However, some unresolved issues in the SM, such as the existence of dark matter and
energy and the asymmetry between matter and antimatter, suggest that there may be physics
beyond the SM (BSM). The Higgs boson is a critical piece of the puzzle in discovering new
physics, and several future collider experiments, such as FCC, CEPC, ILC, and CLIC, aim to
measure its properties precisely. The CEPC is a proposed 100 km circular electron-positron
collider developed by Chinese physicists [1]. The central mass of the energy is expected to
be around 240 GeV for the e+e− −→ ZH process, and the CEPC also aims to produce large
amounts of W and Z bosons for precise electroweak physics studies.

The precise measurement of the Higgs boson imposes stringent requirements on detector
performance, including a tracking efficiency close to 100%, momentum resolution less than
0.1%, and 2 sigma separation power for kaons and pions with momentum below 20 GeV.
To meet these requirements, the 4th conceptual detector design of the CEPC combines a
silicon tracker and a drift chamber. The Figure 1 shows the 4th conceptual detector along
with descriptions of each sub-detector. The drift chamber is a vital component of this design,
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Figure 1. The design of the CEPC 4th conceptual detector.

as it improves track reconstruction performance and enables excellent particle identification
(PID) using the cluster counting method[2]. To evaluate the performance of tracking and
PID, a detailed simulation of the drift chamber is essential. In the following section, we will
describe a refined drift chamber simulation.

This paper is structured as follows: Section 2 will describe the integration of Garfield++
with Geant4. Section 3 shows the fast waveform simulation using neural networks. A sum-
mary is given in Section 4.

2 Integration of Garfield++ with Geant4

While Geant4 [3] is widely used for precise detector simulation, it has limitations in simu-
lating the ionization process that occurs when a charged particle passes through a thin gas.
Additionally, Geant4 cannot accurately simulate the response inside a drift chamber cell, in-
cluding the drift of ionized electrons and ions, the avalanche process when ionized electrons
are close to the signal wire, and the production of the induced waveform of the signal wire.
Fortunately, Garfield++ [4] is commonly used for studying detector responses with simple
geometries, and it can simulate the primary and secondary ionizations, the drift of ionized
electrons and ions, and the induced waveform. However, Garfield++ does not simulate the
multi-scattering process, making it unsuitable for larger detector simulations. To achieve
a more accurate simulation of a drift chamber’s response to charged particles, integrating
Geant4 with Garfield++ is a recommended approach. By combining the capabilities of both
tools, a more comprehensive simulation can be achieved.

Several methods have been proposed for integrating Geant4 and Garfield++ [5]. In this
work, we propose a method that integrates Geant4 and Garfield++ at the G4Step level. The
fundamental concept behind this method is to obtain information on the particle type, mo-
mentum, start position, and step length for each step during a Geant4 simulation. This data is
then used in Garfield++ to simulate the response of the drift chamber cell. The energy depo-
sition simulated by Garfield++ is then used to update the energy of the charged particle and
initiate the next step of both Geant4 and Garfield++ simulations. To implement this method,
we have created a Gaudi [6] tool within CEPCSW [7], which is the official offline software for
the CEPC experiment. To support one-step simulations with a desired step length, we have



Figure 2. The distribution of the number of primary ionization (left) and total ionization (right) per
centimeter for 1 GeV electron passing through the gas ( 50%He + 50%C4H10). Red histogram is for
Geant4+TrackHeed simulation, blue histogram is for standalone Garfield++ simulation.

made an update to Garfield++. In this tool, the primary and secondary ionization simulations
are performed using the TrackHeed class from Garfield++.Simulating waveforms involves
simulating the avalanche process, which can be highly time-consuming for Garfield++. To
address this, we have developed a fast waveform simulation using a neural network, which is
described in Section 3. After the simulation of each step, the information about the primary
and total ionization is saved into an event data model, which in our case is EDM4hep [8].

The performance of the simulation is checked. For example, Figure 2 shows the distri-
bution of the number of primary ionization and total ionization per centimeter for 1 GeV
electron passing through the gas which is 50%He + 50%C4H10. From the result one can see
the integration simulation is consistent with Garfield++ standalone simulation. Additionally,
we evaluated the mean value of the primary ionization distribution and the most probable
value of the total ionization distribution for particles with varying momenta. The results
shown in Figure 3 demonstrate consistency between the two simulation approaches.

3 Fast waveform simulation

The waveform simulation is important as it will be used to reconstruct the number of primary
ionizations (or clusters) which is the input of the cluster counting PID method. Unfortunately,
the Garfield++ waveform simulation method is not suitable for the CEPC experiment due to
its being highly time-consuming. To circumvent this issue, a fast waveform simulation is
developed. Through the study of the simulated pulses from Garfield++, we found the pulse
shape is similar for different pulses, the differences are in the start time and amplitude of the
pulse which is dependent on the local position of ionized electron in the drift chamber cell.
Therefore, the basic idea of the fast waveform simulation consists of two steps. The first step
is to simulate the start time and amplitude of each pulse according to the local position of the
ionized electron. The second step is to use a template of pulse and the simulated start time
and amplitude of pulses to form the waveform (by piling up the pulses, the same approach
used by Garfield++) for each drift chamber cell. The main effort of this work is focused on
the first step which is non-trivial and will be described in detail in the following subsections.



Figure 3. The ratio between Geant4+TrackHeed simulation and standalone Garfield++ simulation for
mean value of the primary ionization distribution (left) and for the most probable value of the total
ionization distribution (right).

3.1 The neural network model

The goal of this task is to simulate the amplitude and start time of the pulse (or the drift time
of the ionized electron) according to the local x and y position of the ionized electron in a
drift chamber cell. Traditionally, the histogram sampling method is used for this task, which
involves dividing the local x and y positions into many fine bins and producing numerous
2D histograms of the amplitude and drift time distributions. However, this approach can
be computationally expensive. In recent years, deep learning has developed rapidly, and it
has become an area of advanced research for simulation or generation tasks. In high-energy
physics, there have been many studies that use deep learning to simulate detector responses,
such as CaloGAN [9] and CaloFlow [10], which have shown promising performance.

In this study, we developed a neural network model based on Normalizing Flow (NF)
[11] to do the simulation. Compared to Generative Adversarial Networks (GAN) [12], NF
has been shown to be more stable and convergent during training. The structure of our NF
model is similar to that of CaloFlow [10], which uses rational quadratic spline (RQS) [13] for
transformation and uses a Masked Autoencoder for Density Estimation (MADE) [14] block
for learning the parameters of the RQS transformation. The training and inference flow of our
model can be seen in Figure 4. During training, the input data from Garfield++ simulation,
including the amplitude and drift time, are fed into the NF model, along with the local x
and y information as conditional data for the MADE block. The MADE block learns the
parameters of the RQS transformation, which is then used to transform the distributions of
the amplitude and drift time. By stacking this workflow several times, the final transformed
distributions of the amplitude and drift time converge to the base distributions, which are two
Normal distributions in our case. During inference, one simply needs to sample from two
independent Normal distributions and perform the inverse RQS transformations to obtain the
simulated amplitude and drift time. The detailed structure and parameters of our model can
be found in Figure 5. In our study, we have used the Garfield++ simulation data for training
the NF model, and the Adam optimizer [15] was used for the optimization.



Figure 4. The schematic plot of the NF model, the blue lines are for training, the red lines are for
inference.

Figure 5. The parameters of the NF model.

Figure 6. The two-dimension distribution of drift time versus radius. The left plot is from the neural
network simulation and the right plot is from Garfield++ simulation.

3.2 Results

We have validated the results of our waveform simulation using a comparison with the
Garfield++ simulation. For example, we have compared the two-dimensional distributions
of drift time versus radius (equal to

√
x2 + y2), as shown in Figure 6. The results from the

neural network simulation and Garfield++ simulation are very similar, indicating that our
neural network simulation has high fidelity. The forking behavior of the drift time for large
radii is caused by the inhomogeneous electromagnetic field in the cell edge region which
is a known effect. In addition, Figure 7 shows the drift time distribution in different radius
regions. The results from the neural network simulation are consistent with those from the
Garfield++ simulation, further validating the accuracy of our waveform simulation.



Figure 7. The comparison of drift time distribution between the Garfield++ and the neural network
simulation for different radius regions. The top left is for a radius of 0.4-0.6 cm, the top right is for a
radius of 0.6-0.8 cm, the bottom left is for a radius of 0.8-1.0 cm, and the bottom right is for a radius of
1.0-1.2 cm.

3.3 Method validation

To further validate our simulation method, we have performed a study using real data from
the BESIII experiment [16]. The BESIII experiment also uses a drift chamber for tracking
and particle identification (PID) using the dE/dx method. The detector display for BESIII
can be seen in the left plot of Figure 8. In our study, we aim to simulate the drift time versus
the entrance angle and distance of the closest approach (DOCA) of a track using real data.
Compared to simulated data, real data is more complex and presents greater challenges in
learning its distribution.

The workflow of our study can be seen in the right plot of Figure 8. First, we prepare
the experimental data for training, which in our case is the radiative Bhabha event. We then
construct a Normalizing Flow model with a similar structure to the one described in Section
3.1 to learn the drift time distribution according to the entrance angle, DOCA, and the layer
number of the drift chamber cell. The cell geometry and high voltage of the signal wire vary
across different layers, and these effects are taken into account in our simulation. An example
of the drift time simulation result can be seen in Figure 9. The results from the real data and
the neural network simulation are quite similar, indicating that our model can accurately learn
the drift time distribution from the real data. After training, we obtain the X-T curves, which



Figure 8. Left plot: the display of the BES3 detector. Right plot: the workflow of this validation study.

Figure 9. The distributions of drift time versus radius from neural network simulation (left) and real
data (right) for 20th layer of the drift chamber.

Figure 10. The compared the spatial resolution of using Cdata
X−T and CNNS im.

X−T in the near wire region and
far wire region.

are the mean of the drift time versus radius, using the experimental data (Cdata
X−T ) and the neural

network simulation data (CNNS im.
X−T ). We then check the spatial resolution of the reconstructed

track separately using Cdata
X−T and CNNS im.

X−T , as shown in Figure 10. The spatial resolution results
are consistent when using these two X-T curves, indicating that our neural network model can
accurately learn the drift time distribution from the real data and that our simulation method
is feasible.



4 Summary
Accurately simulating the drift chamber detector is crucial for the success of the CEPC exper-
iment. This paper presents a study on the integration of Garfield++ simulation with Geant4
simulation to achieve precise simulation of detector response in the drift chamber cells. In
order to address the issue of waveform simulation being too time-consuming, a fast wave-
form simulation method using the neural network has been introduced which gives promis-
ing results. Furthermore, the method has been validated using real data from the BESIII
experiment, demonstrating its feasibility.
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