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Abstract. For Run 3, ATLAS redesigned its offline software, Athena, so that
the main workflows run completely multithreaded. The resulting substantial re-
duction in the overall memory requirements allows for better use of machines
with many cores. This note will discuss the performance achieved by the mul-
tithreaded reconstruction, the process of migrating the large ATLAS code base,
and tools and techniques that were useful in debugging threading-related prob-
lems.
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1 Introduction

Run 3 of the ATLAS experiment [1] at the CERN Large Hadron Collider started last year,
bringing with it new demands on computing. But in the years leading up to this, there were
significant changes in the computing landscape. CPU clock speeds largely plateaued, with
systems instead including more cores and wider vector units. Memory prices have also not
been decreasing much. The result is that the ratio of memory to cores has tended to decrease
in deployed systems.

While typical computational problems in high-energy physics tend to be embarrassingly
parallel, involving the processing of independent events, they also tend to require a lot of
memory. Requirements of 4–8 GB of memory per job are not uncommon. This means that if
the core count of a system grows faster then the available memory, then eventually one will
not be able to keep all the cores busy by running multiple independent jobs. To fully use all
available resources, one must reduce the memory required per core.

For Run 2, ATLAS reduced memory requirements using multiprocessing. After initializa-
tion, a job forks subprocesses which then work on events in parallel. Due to the copy-on-write
behavior of the operating system, unmodified memory pages remain shared between all sub-
processes, yielding memory savings up to about a factor of two [2]. This, however, was not
sufficient for Run 3. Fully multithreaded (MT) solutions, however, had shown substantial
memory savings by allowing much greater memory sharing. ATLAS therefore adopted this
strategy for Run 3 [3–5].
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Section 2 introduces the Athena framework and summarizes the changes that were made
in order for it to run multithreaded. Section 3 discusses the process of the migration, Sec-
tion 4 covers diagnostics and techniques used for debugging, and Section 5 presents some
performance results.

2 Athena framework and modifications for multithreading

The ATLAS software framework, Athena [6, 7], is built on top of the Gaudi project [8],
developed jointly with LHCb and other experiments. As shown in Figure 1, an Athena ap-
plication consists of dynamically-loadable components, including Algorithms, Services, and
Tools. Algorithms read, process, and write items of event data contained in a separate ‘event
store’; ideally, they do not contain event data themselves. Services are singletons provid-
ing functionality such as error logging and metadata handling. Tools serve as helpers for
other components and are usually accessed via an abstract interface. Tools may be owned by
Algorithms, Services, or other Tools.

Figure 1. General structure of an Athena application.

When Athena is running serially, Algorithms are executed in a fixed sequence defined
during job configuration. To allow for multithreaded execution, Algorithms are modified so
that they declare their input and output data dependencies. A scheduler can then execute an
Algorithm in a free thread once all its input dependencies are satisfied. Further, by using mul-
tiple event stores (or ‘slots’), each holding a different event, multiple events can be processed
in parallel (see Figure 2). However, simply declaring dependencies is not always sufficient.
For example, the serial version of Athena contained Algorithms which modified existing data
in the event store. This is not permissible in an MT environment, so those Algorithms needed
to be redesigned.

Besides event data, Algorithms may also depend on ‘conditions’ data; that is, data which
is valid over some range of events, such as calibration information. Algorithms declare their
dependencies on conditions data in a similar manner to event data. In many cases, items
of conditions data need to be transformed in various ways. This is also implemented by
schedulable Algorithms which act on conditions data similarly to how other Algorithms act
on event data [9].

Services, which are essentially global singleton objects, need to be made explicitly thread-
safe, using locking or other techniques. However, a typical Algorithm, which retrieves data



Figure 2. Multithreaded Athena. Colors represent different events, and shapes represent different
Algorithms.

objects from the event store, processes them, and stores new objects back, will often not need
to be explicitly aware of threading. It must, however, avoid thread-unfriendly constructs such
as const_cast and static data. Where feasible, Algorithms should also be made reentrant
(that is, with no mutable data, allowing the same instance to be used in multiple threads).

For Algorithms with more complicated requirements, a small library of helpers is avail-
able to factor out code important for thread-safety. These helpers use atomic operations
rather than locking where possible to improve scalability. Some of these helpers include
SlotSpecificObj<T>, which holds a separate T instance for each event slot, and allows
access without locking; CachedValue<T>, which implements a value that can be set from
multiple threads but always to the same value, and LockedPointer<T>, which bundles a
pointer along with a lock and can be returned from an accessor function. There is also a set
of container classes (bitset, hash maps, and a specialized container for conditions ranges) that
allow for concurrent, lockless reads. Many of these are described in more detail in Ref. [10]
and are available in Ref. [11]

3 Multithreaded migration

Although most components were reasonably straightforward to migrate, the ATLAS code
base is quite large: about five million lines of C++ (ignoring other languages, such as Python)
comprising about 2000 packages and thousands of components. The migration was thus
a multi-year project involving many people. It was tracked by semi-automated reports of
components yet to be migrated, which were posted on a dedicated web page and presented at
weekly meetings (see Figure 3(a)).

The migration also made use of a custom static checker [5, 12] to detect potential thread-
safety problems, implemented as a gcc [13] plugin. The problems about which it warns
include the use of non-const static data and const-correctness issues. For example, the
checker will warn about the call in this example passing a non-const member pointer to
another function from a const member:

1 void fee(int*);
2 struct S {
3 int* p;
4 void bar() const { fee(p); }
5 };
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Figure 3. (a) Sample of semi-automatic report generated to track the progress of the multithreaded
migration. (b) Number of components migrated for multithreading and fraction of packages that pass
the thread-safety checker as a function of time.

Warnings may be suppressed on a case-by-case basis by annotating the source with macros
that expand to custom C++ attributes known by the checker. The checker runs only on pack-
ages for which it is requested. This can be either explicitly declared package by package, or
the checker can be requested to run on entire subtrees of the source tree from a configuration
file.

The effort to make Athena multithreaded started around 2014 with small-scale prototyp-
ing. By mid-2018, most of the design for the core components was complete and reconstruc-
tion was working for the calorimeter on simulated data. At this point, work started to migrate
the bulk of the reconstruction to run multithreaded. By early 2020, the full reconstruction
was running on simulated data with an observed failure rate of about 10−4. By early 2021,
the reconstruction was running on real data with no irreproducibilities with a failure rate of
about 10−6. By mid-2021, the failure rate was reduced to 10−7. The multithreaded recon-
struction was running in production by October 2021, reprocessing data from Run 2. Over
this period, very approximately three to six full-time-equivalents were working on the migra-
tion. The progress over time at migrating components for multithreading and updating code
to pass the thread-safety static checker is shown in Figure 3(b).

4 Testing, debugging, and diagnostics

Issues related to multithreading tend to be both rare and irreproducible. The fact that they
are rare means that regular, high-statistics tests are needed. ATLAS set up procedures to run
weekly tests of the latest reconstruction code over about 100 million events. This allowed
seeing crashes of frequency 10−7 or less. This was invaluable in finding and tracking rare
problems. However, because available resources did not allow running this more than about
once a week, there was often a considerable turnaround time when testing fixes and adding
code to help debug problems.

The fact that issues are irreproducible means that one needs to collect good diagnostics
in the case of crashes. In a few special cases, ATLAS members were able to work with
computing facility managers to obtain core dumps from failing jobs, or to attach debuggers
to jobs that had gotten stuck. But mostly this means stack dumps.

On a crash, Athena will print out the currenty-executing Algorithm in each thread, fol-
lowed by the ROOT [14] stack trace for all threads. This however is not always reliable. For



example, the ROOT stack trace code allocates dynamic memory, so if the program crashed
due to corrupt heap, the ROOT stack trace would often fail as well, providing no information.

Therefore, Athena first produces a robust or ‘fast’ stack dump from the faulting
thread [15]. This is carefully written to avoid any use of dynamic memory allocation and most
use of C library functions that may depend on internal state. For example, write/pipe/fork
are used directly rather than library functions like printf/std::cout/popen. Any memory
needed is taken from the stack, or in a few cases, from pre-allocated memory regions. In
addition, an alternate signal stack is defined (using sigaltstack), so that a trace can be
generated even if the stack is exhausted or the stack pointer is corrupt. The trace starts with
a dump of the machine registers; this proved to be essential to working out some crashes.
In addition, the dump calculates addresses as offsets within each shared library. This is very
useful for locating the precise point of the crash even when address space randomization is
in use: one can simply search for the offset in a disassembly of the shared library to find the
faulting instruction. An example of such a stack trace is given in Figure 4.

1 (pid=2120 ppid=8969) received fatal signal 11 (Segmentation fault)
2 signal context:
3 signo = 11, errno = 0, code = 1 (address not mapped to object)
4 pid = 0, uid = 0
5 value = (0, (nil))
6 addr = (nil)
7 stack = (0, 202000, 0x7f8d68001a40)
8

9 rip: 0033:00007f8d7432da43 eflags: 0000000000010203
10 rax: 0000000000000000 rbx: 00007f8d68203b20
11 rcx: 0042676c41657669 rdx: 0000000000000000
12 r08: 00007f8d68000090 r09: 0000000000000060
13 r10: 00007f8d7cc1e3e8 r11: 00007f8d7cc3d418
14 r12: 000056534400fbb8 r13: 00007f8d7327e900
15 r14: 00007f8d7327e940 r15: 0000000000000000
16 rsi: 0000000000000000 rdi: 0000565343f20060
17 rbp: 00007f8d7327e8a0 rsp: 00007f8d7327e5d0
18 gs: 0000 fs: 0000
19

20 stack trace:
21 0x7f8d7432da43 HiveAlgB::execute() Control/AthenaExamples/
22 AthExHive/src/HiveAlgB.cxx:60:24 + 0x143 [build/libs/
23 libAthExHive_components.so D[0x32da43]]
24 0x7f8d83d4ba61 Gaudi::Algorithm::sysExecute(EventContext
25 const&) GaudiKernel/src/Lib/Algorithm.cpp:366:23 + 0x181
26 [build/libs/libGaudiKernel.so D[0x34ba61]]

Figure 4. Example of a robust stack dump (abridged).

On x86_64 platforms, the base pointer register (rbp) can be used as an additional general-
purpose register. However, this implies that one needs to rely on debugging information to
unwind the stack, in order to find the proper offset between the stack pointer and the start of
the stack frame at any point within a given function. However, it was observed that because of



this, the stack trace would often not proceed beyond a virtual function call from an object with
a corrupt virtual table, making it impossible to find from where the bad call actually occurred.
To improve this, the Athena stack dump code detects when the stack trace is truncated early.
In such a case, it injects a synthetic block of unwinding information based on the actual
location seen in the stack. In most cases, this allows the stack trace to proceed past problems
such as calls with a corrupt virtual table.

One of the most difficult problems to diagnose is heap corruption. Even in the single-
threaded case, a visible crash may not happen until long after the actual corruption. While
the exact strategies used are often quite specific to the particular issue being diagnosed, two
that may be of interest are summarized here.

ATLAS uses TCMalloc [16] as the default memory allocator for production jobs. TC-
Malloc maintains a per-thread cache of free blocks, sorted into size classes, with free blocks
for each class organized as a singly-linked list. A rare crash was observed in which a for-
ward pointer in the free list was corrupt. To diagnose this, ATLAS modified TCMalloc to
add additional checking. When a block is freed, the forward link pointer is duplicated in the
block and, if the block has enough room, a specific magic value is written into the block.
When a block is removed from the free list, these words are checked and if they do not match
what is expected, the program aborts. The consistency of the blocks at the start of the free
list is also checked on all allocate/free operations. This modified version of TCMalloc very
quickly located the problem that prompted it (a race condition leading to a double-deletion)
after several weeks of failing to find it by other means.

In another case, heap corruption was seen where a forward pointer was being overwritten,
but always with the same distinctive value, which could be seen in the rax register in the stack
dump:

1 rax: 3fc0be57ef09fe55 rbx: 0000000151ed8d80

The value here is not a small integer, not a valid pointer, and not a likely floating-point
number. The crash was also particularly rare, at a rate of below 10−6. While one might like
to try to trap the write of this value in the debugger, this was not possible because only the
value is known, not the address. Instead, ATLAS created a custom Valgrind [17] checker that
logged all writes of that particular value:

1 static VG_REGPARM(2) void trace_store(Addr addr, SizeT size){
2 if (size == 8) {
3 unsigned long long val = *(unsigned long long*)addr;
4 if (val == 0x3fc0be57ef09fe55) {
5 VG_(printf)(" wrote %08lx %08llx\n", addr, val);
6 VG_(get_and_pp_StackTrace) (VG_(get_running_tid)(),20);

This immediately located the problem (which was a rare race condition in writing a
std::vector containing seed information for a random number generator).

5 Results and summary

In order to reduce the memory required per core, ATLAS has migrated its five-million-line
offline code base to run multithreaded, roughly a five-year project. The resulting performance
is excellent. Figure 5 shows the resulting performance as measured in mid-2021. The mem-
ory required scales at about 0.3 GB per thread, and the CPU scaling is very good up to at



least eight threads. Work has been continuing to further improve the performance. The mul-
tithreaded reconstruction is now in production for Run 3 data and reprocessing Run 2 data.
This work is also expected to form a solid base for work on supporting heterogeneous systems
for Run 4.
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Figure 5. (a) Memory and (b) throughput scaling for full reconstruction as a function of number of
threads/processes, comparing serial, multithreaded (MT), and multiprocessing (MP) jobs, as of the
Athena release current in mid-2021. Tested on a 16-core Xeon E5-2630 processor with no hyper-
threading. Results are for all phases of processing, including initialization, finalization, and output file
merging. The jobs processed 250 events per thread, and the average number of collisions per crossing
(⟨µ⟩) was about 50. The ideal line shown in (b) is not straight due to CPU thermal throttling at high
loads. From Ref. [18].
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