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Abstract. With the exponential growth in the volume and complexity of 
data generated at high-energy physics and nuclear physics research facilities, 
there is an imperative demand for innovative strategies to process this data 
in real or near-real-time. Given the surge in the requirement for high-
performance computing, it becomes pivotal to reassess the adaptability of 
current data processing architectures in integrating new technologies and 
managing streaming data. This paper introduces the ERSAP framework, a 
modern solution that synergizes flow-based programming with the reactive 
actor model, paving the way for distributed, reactive, and high performance 
in data stream processing applications. Additionally, we unveil a novel 
algorithm focused on time-based clustering and event identification in data 
streams. The efficacy of this approach is further exemplified through the 
data-stream processing outcomes obtained from the recent beam tests of the 
EIC prototype calorimeter at DESY.  

1 Introduction 
Data stream processing poses new challenges, and new frameworks are needed to fit them 
better [1]. Due to the increasing demand for high-performance computing, existing data 
processing architectures must be reevaluated in their adaptability to adopt new technologies 
and process streaming data. ERSAP is a reactive actor model and FBP [2] paradigm-based 
framework to design a data-stream processing application for nuclear physics (NP). This 
framework encourages the functional decomposition of the overall data processing 
application into mono-functional artifacts that are easy to understand, develop, deploy, and 
debug. Since these artifacts or actors are programmatically independent, they can be scaled 
and optimized independently, which is impossible for monolithic application components. A 
critical advantage of this approach is fault tolerance, where independent actors can come and 
go in the data stream without causing the entire application to stop or crash. Furthermore, 
locating any faulty actor in the data pipeline is simple.  

Since the actors are loosely coupled, and the data carries the context, they can run in 
heterogeneous environments utilizing different accelerators. The actors can be physically 
separated, so deploying a new set of actors does not put the whole system on hold, and the 
updates are less intrusive. Independent development teams can develop 
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Fig. 1. ERSAP core components. DPE: Data Processing Environment, SM: Shared Memory, DPS: 
Data processing Station, UE: User Engine. 

 

The actors and engines handle specific system areas with their release cycles and at their own 
pace. A notable feature of ERSAP is the ability to represent the whole data processing 
application as a data-flow graph. An important implication of the graph-like structure is the 
ability to reason about the entire application in a unique way that is often difficult in the case 
of object-oriented programming or service-oriented architectures and allows visual no-code 
programming [3]. With this type of programming, you can add, remove, and connect different 
components to get different outcomes or functionality. Also, having a visual representation 
of the algorithm makes it more accessible to users so they can easily create applications 
without writing multiple lines of code. 

2 Framework 
ERSAP is a flexible data-stream processing framework that allows the design and 
deployment of data-stream processing applications that can evolve. It is an environment that 
will encourage implementing new ideas and technologies while preserving the integrity of 
existing data pipelines. The three essential components of this framework are a reactive actor, 
a data-stream pipe (the communication channel between actors), and an orchestrator or the 
workflow manager of the application (see Fig. 1). 
During operation, a stream of data-quanta will flow through a directed graph of reactive 

actors, where the accumulated effect of these actors defines application logic. 
The fundamental difference between ERSAP and other frameworks is that instead of 

instructions moving across functions, the data drives, triggering the execution of actors' 
engines. The data-oriented nature of this environment makes actors programmatically 
independent. Another important design aspect is that data moves across actors through 
externally predefined connections.  As shown in Fig. 1, some actors have inputs and outputs, 
and some only have inputs or outputs. Hence, ERSAP defines two types of actors: stream 
source/sync actors and data processing actors. However, we use the same actor abstraction 
to integrate user algorithms for both components.  A data-stream processing application is a 
network of interconnected actors, and each is abstracted as a data processing station (DPS). 
Each station provides a run-time environment for user algorithms and handles all data 
communication. As a result, an engine developer is relieved of network programming, data 



 

 

serialization, and I/O in general and always gets a data object as input. The engine’s only 
requirement is to implement the data-in/data-out interface to be considered an actor in 
ERSAP. The station also provides a means for engine configuration and scaling, potentially 
freeing users from writing multi-threaded code. 

3 The dataflow model 
The ERSAP model represents a data processing application by a directed graph [4]. The 
graph nodes are actors encapsulating user data processing algorithms (also referred to as an 
engine within the framework's terminology). Directed arcs between the nodes represent the 
data dependencies between actors. Arcs that flow toward an actor are input arcs, while those 
that flow away are said to be output arcs from that actor. Conceptually, data flow as tokens 
(data quanta) along the arcs and behave like unbounded first-in, first-out queues. 
When a program begins, stream source actors place data onto certain key input arcs, 

triggering the rest of the application. The actor is said to be active whenever an actor's specific 
set of input arcs (called an activation set) has data. As a result, a busy node/actor reacts to the 
input data quantum, performs its operation, and places a new data token on some or all of its 
output arcs. It then ceases execution and waits to become active again. The essential 
advantage is that, in a data pipeline, more than one actor can become involved at once. Thus, 
if several actors become active simultaneously, they can be executed in parallel. This simple 
principle allows massively parallel execution at the data quantum level. Another advantage 
is that the message-passing mechanism in the actor model makes it easy to support data 
computation via data messages and debugging requests via control messages. Streaming 
control messages in the same pipeline as data messages leads to application elasticity and 
fault tolerance. 
 

4 Event identification in the streaming data 
In the growing field of data analytics, density-based clustering stands out as a significant 
method for identifying patterns and associations in datasets. Traditional approaches, such as 
DBSCAN [5], have provided foundational understanding. However, with the exponential rise 
in real-time data streams, particularly time-series data, a need emerges for more efficient 
algorithms to process this data swiftly and accurately. The Adaptive Crawling Window Event 
Clustering (ACWEC) algorithm is introduced to address this precise need. Distinct from 
DBSCAN, ACWEC's design is such that it traverses a one-dimensional time-series dataset 
just once, ensuring a high degree of efficiency. At its core, ACWEC leverages two primary 
features: adaptive window size and the timestamp of every incoming event. By doing so, it 
can discern and group events that are temporally proximate to each other within a user-
defined time frame. As data flows, for every event that enters the system, the algorithm 
evaluates its nature. It determines whether the event can be classified as a core event. The 
criteria for this classification is based on the presence of a minimum number of events (as 
specified by the Nn 'minimum samples' parameter) within a specific time, referred to as Th. 
Expanding from these identified core events, the algorithm then includes events that can be 
reached within the same Th time, forming a dense cluster.  
Conversely, suppose an event neither qualifies as a core event nor can be accessed from other 
core events within the stipulated Th duration. In that case, it is labeled as noise and remains 
un-clustered. The operational dynamics of ACWEC come to the fore when the adaptive 
window is deployed. The right edge of this window is designed to slide and encompass events 



 

 

guided by input parameters. As it moves, the algorithm constantly checks the time difference 
between the window's earliest and most recent events. 
 

 
Fig. 2. ACWEC algorithm 
 
A cluster is recognized if this time difference aligns with the predetermined window. If not, 

the algorithm doesn't halt but instead makes an intuitive adjustment: it shifts the left edge of 
the window to exclude certain events, ensuring that the time difference criterion is satisfied. 
In the meantime, the right edge progresses forward, continuously integrating new events. 
This seamless back-and-forth, characterized by adaptability, is what empowers ACWEC. 
Though iterative, the entire process is carried out in a single pass through the data. The 
outcome is a dynamic algorithm highly responsive to the ever-changing nature of data 
streams and adept at pinpointing event clusters with remarkable precision in real-time 
scenarios. The ACWEC algorithm is illustrated in Fig 2. 

5 EIC prototype calorimeter ERSAP pipeline at DESY 
The EIC prototype calorimeter's stream readout and processing application is a directed graph 
with two parallel pipelines that branch out from the root pipeline and are dedicated to 
decoding VXS trigger processor (VTP) [6] data frames (see Fig 3).  The common source 
(actor) for these branches presents a set of FADC250 [7] hits per timestamp on two outgoing 
edges directed to destination actors that perform beam and cosmic event identification. Real-
time event identification pipelines of the application include histogram actors that visualize 
cosmic muon and beam lepton events online. 
Fig 4 portrays the process of lepton identification through the accumulation of signals 

emanating from crystals within the electromagnetic calorimeter (The X axis is the ADC 
channel, and the Y axis is the hit count). Simultaneously, the graph exhibits the linearity of 
the response generated by the electromagnetic calorimeter. This representation effectively 
demonstrates the discernment of leptons and validates the consistent behavior of the 
calorimeter's signal output. 
 



 

 

 
Fig 3. Data-stream processing pipeline for the EIC prototype calorimeter. 

 

 
 

Fig 4. Energy deposition of leptons in the 5x5 calorimeter and response linearity. 

6 Summary 
The paper addresses the challenges posed by the growing volume and intricacy of data 
produced by high-energy physics and nuclear physics research facilities. The pressing need 
for enhanced real-time data processing is discussed, emphasizing the urgency to rethink the 
flexibility of current data processing architectures. The central highlight of this paper is the 
introduction of the ERSAP framework. ERSAP synergistically combines flow-based 
programming and the reactive actor model, propelling the efficiency of distributed, real-time 
data stream processing applications forward. Within ERSAP, the data processing application 
is represented as a data-flow graph, promoting visual no-code programming. This visual 
representation simplifies the development process, enabling users to establish applications 
without extensive coding. The paper also introduces the adaptive crawling window event 
clustering (ACWEC) algorithm. This new algorithm, designed for time-series data, 
efficiently clusters events based on their temporal proximity. The real-world application of 
this framework is demonstrated through the EIC prototype calorimeter's data-stream 
processing at DESY, showcasing its real-time capabilities in distinguishing cosmic muon and 
beam lepton events. 
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