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Abstract. Hydra is a system utilizing computer vision for near real-time data
quality monitoring. Currently operational across all of Jefferson Lab’s experi-
mental halls, it reduces the workload of shift takers by autonomously monitor-
ing diagnostic plots during experiments. Hydra uses "off-the-shelf" supervised
learning technologies and is supported by a comprehensive MySQL database.
To simplify access, web apps have been developed to facilitate both labeling
and monitoring of Hydra’s inferences. Hydra can connect with the alarm sys-
tem and incorporates complete historical tracking, enabling it to identify issues
that shift takers could miss. When issues are detected, a natural first question
is: "Why does Hydra think there is a problem?" To answer, Hydra employs
Gradient-weighted Class Activation Maps (GradCAM) to identify regions of
the image that are important for the specific classification. This interpretive
layer enhances transparency and trustworthiness, which is essential for integra-
tion with experiment workflows and operation. The Hydra system, results, and
sociological considerations for deployment will be discussed.

1 Traditional Data Quality Monitoring

The Thomas Jefferson National Accelerator Facility in Newport News, Virginia is home to
four experimental halls, each having unique detector systems in place to carry out research in
support of the Lab’s scientific mission. During experiments, shift crews are responsible for
monitoring the quality of the data, responding to phone calls, alarms, configuration changes,
unplanned experiment down events, emergencies, and other events during the normal course
of data taking. The counting houses are staffed 24 hours a day with a 2 person shift crew,
at minimum. During the COVID-19 pandemic, this was reduced to a single person in the
counting house and one person performing tasks remotely. The shift crew is staffed from a
pool of graduate students, post-doctoral researchers, and staff scientists for either 6 or 8 hour
shifts, depending on the specific hall.

Online monitoring is tedious. There are discrepancies inherent with human-based mon-
itoring as no two shift crews monitor the data with the same diligence and frequency, even
with established guidelines. In addition, there are typically thousands of plots to look at on
a daily basis, as shown in Fig. 1. Given the challenges associated with human-based online
monitoring, potential issues are prone to going unnoticed; this is especially true of intermit-
tent problems that occur on small time scales. The volume of images to review along with
the other responsibilities of the shift crew can contribute to even obvious issues being missed.
To mitigate the inconsistencies with human based monitoring, Hydra has been developed and
deployed in all four experimental halls.
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Figure 1. The approximate number of individual histograms, per experiment per run, monitored by the
shift crew.

2 Hydra: Data Quality Monitoring with Computer Vision

Hydra is a system designed for real-time data quality monitoring, encompassing both the
training and managing of AI models as well as the user interface to them. A comprehen-
sive MySQL database serves as the backend, containing a wealth of information related to
various monitoring histograms, model training parameters, classifications, user permissions,
available labels, and storage locations for model files and images. The front end of Hydra
is comprised of web applications, a deliberate choice to accommodate users who may lack
experience in working directly with databases or artificial intelligence. The web applications
are accessible from anywhere, facilitating remote monitoring of detector performance, a par-
ticularly valuable feature during the COVID-19 pandemic when remote shifts were required.

By default, Hydra primarily utilizes InceptionV3 [1], a deep learning network developed
by Google for image classification. InceptionV3 contains 48 layers, combining convolutional,
pooling, and dense layers with extensive use of batch normalization applied to activation
inputs. The loss function is computed using Softmax. When evaluated on the ImageNet data
set, InceptionV3 is able to attain greater than 78% accuracy. The model is available in Keras
[2] and TensorFlow [3]. Hydra does not impose a restriction on the use of InceptionV3; users
can develop and train their own models for image classification if they wish.

At present, each Hall has its own software to display images for the shift crew to compare
to references and record in the logbook. As a result of this logging, we have a tremendous
amount of monitoring images available for use in training image classifiers. This is important,
as deep neural networks tend to require large data sets for training. Hydra utilizes a "push-
button" training script to train a model using these images. The pool of monitoring images
employed for training typically exhibits a large class imbalance, stemming from the fact that
our detectors function properly nearly all of the time. Consequently, we can strategically
under sample the "Good" images as they are often very similar, without sacrificing model
performance. Once training has completed, inference is performed across the complete set
of labeled images with metrics such as precision, recall, accuracy, and the F1 score being
automatically computed. A report is generated enabling users to re-evaluate instances where
Hydra’s classification and the expert’s label do not agree. This stage proves instrumental in
identifying and correcting errors in labeling or classification.



Currently, models are trained for a single monitoring image, with the selection of images
for Hydra’s monitoring being the responsibility of the detector experts. Once the model is
deemed suitable for use in production, both the image and its associated classifications will
appear on the Hydra Run page. As shown in Fig. 2, this is displayed in the counting houses,
typically alongside the traditional monitoring software. Here, a "bird’s eye view" of the
monitoring histograms is displayed. For documentation purposes, the run number, date and
time, plot name, and Hydra’s classification with confidence is shown. The Hydra Run page
has a configurable display based on user preferences. If a plot has an associated model but is
not currently suitable for monitoring, users can temporarily hide the plot from the page. Users
can choose to superimpose heat maps generated using Gradient weighted Class Activation
Maps (GradCAM) [4], which serves to highlight regions of focus that Hydra considers when
generating its classification. This feature can assist the shift crew in promptly identifying
problematic images and comprehending the underlying reasons, without necessitating the
presence of a detector expert. When Hydra is confident that an image is "Bad", the image
will be highlighted in red, alerting the shift crew of a potential problem. A green border
indicates an image is classified as "Good" or "Acceptable" and that the confidence is above
the designated threshold. A black border is reserved for miscellaneous classifications like
"LED", "cosmics", and other labels that the individual detector experts requested for their
plot types.

Figure 2. The Hydra Run page. This page is visible in the counting house during experiments. For
each image, it displays the name, date and time, associated Run Number, and Hydra’s classification and
confidence. Optionally, the GradCAM heat maps can be overlayed. Images that are classified as "Bad"
with high confidence are highlighted in red.

Note, the Hydra Run page will still display monitoring plots that do not have a model
suitable for production because the shift crew should, in principle, still be monitoring those.
They appear at the bottom of the page with a dashed border and without Hydra’s classification
and confidence.



3 Hydra User Experience

Web applications have been developed to facilitate interaction between the Hydra system and
its users. Ensuring that the front end system is user-friendly, responsive, and dependable is a
top priority. To this end, the front end of Hydra consists of multiple pages that serve different
purposes. The initial point of interaction for users, aside from the Run page, is the data
labeler, shown in Fig. 3. Here, detector experts and users (with permission) can efficiently
label numerous images concurrently. When the labels are submitted, the associated database
is updated. A continual stream of images is directed to the labeler throughout the experiments
to allow for performance monitoring and further model training.

Figure 3. The image "labeler" tool. This page allows users to assign labels to multiple images effi-
ciently. Users can select images from a range of run numbers and can choose how many columns of
images to display.

Once a model is trained and inference is run, users can visit the Library page, shown in
Fig. 4, to view an "enhanced" confusion matrix. For each entry in the confusion matrix,
users can see a distribution of the maximum Softmax probability (normalized to 1) for each
inference. This enables users to determine if Hydra is confidently mis-classifying images.
Moreover, the option to apply a threshold to the distribution, using either the F1 score as a
default or through manual input, enables the rate of false positive alarms to be fine tuned.
The active models, those used in production, are denoted by a star icon. The page facilitates
comparison of all trained models for each plot type.

The remaining web applications are dedicated to displaying time series data of Hydra’s
classifications. The Grafana dashboard, shown in Fig. 5, visually represents prediction over
time for all detector systems. Users have the flexibility to selectively view a subset of predic-
tions and/or detector systems. Grafana solely displays the predictions and confidence values,
excluding the corresponding images. For a comprehensive view that includes both predic-
tions and images, Hydra Log was developed. This page enables users to inspect "Bad" and
"Unconfirmed" images from the preceding 24 hours. An example is shown in Fig. 6. Sim-
ilarly to the Grafana dashboard, users can selectively view a subset of run numbers and/or
detector systems.

4 Performance

Hydra has proven its efficacy on multiple occasions by identifying issues both in advance
of and alongside the shift crew. Two such examples are shown below. The first occurred



Figure 4. The Library page displays an enhanced confusion matrix. In each cell, the confidence distri-
bution is shown in addition to the counts belonging in that cell.

Figure 5. The Grafana dashboard allows users to see all of Hydra’s classifications over time.

Figure 6. The Hydra Log page displays all "Bad" and "Unconfirmed" images for the previous 24 hours.
Users can select all available runs and detector systems or just a subset for viewing.



in Hall B on 02/20/2023 at 08:35 EST, Hydra detected an anomaly with the electromagnetic
calorimeter (ECAL). As shown in Fig. 7, sector 2 of the ECAL is empty. The heat map shows
that Hydra correctly identified the problematic regions of the histograms. This was rectified
immediately during a planned downtime by replacing an electronics board.

Figure 7. A monitoring image obtained from Hall B showing the occupancy per sector for the CLAS12
Electromagnetic Calorimeter. The GradCAM heat map is superimposed to indicate where Hydra was
looking when it classified this image as "Bad".

The second example, occurs infrequently in Hall D, is critical to identify and respond to
immediately. The histogram displays the count of trigger time errors, which should always
be zero. In the event Hydra detects color in the histogram (indicating a non zero count), the
shift crew is alerted via the audible alarm system. It is imperative the shift crew stops taking
data and contacts the DAQ experts as data taken during this state is not usable for analysis. It
was observed that the shift crew would frequently miss this plot displaying color, even though
the monitoring histograms are cycled through. Since applying an audible alarm to this plot,
the shift crew’s responsiveness has improved significantly drastically reducing the amount of
unusable data collected.

Figure 8. A monitoring image obtained from Hall D showing the count of trigger time errors. This plot
should always remain empty. In the event the count is non-zero, Hydra flags the image as "Bad" and an
audible alarm is sounded to alert the shift crew.

5 Conclusion

Variations in monitoring, diligence among the shift crews, and the overwhelming number
of plots to review collectively present challenges to all nuclear physics research facilities
in promptly identifying potential issues which can impact data quality. By incorporating
computer vision techniques that consistently and rapidly analyze images, Hydra successfully



augments the shift crew and provides a more frequent and standardized approach to online
data quality monitoring. Through its user-friendly web applications, users can interact with
Hydra without having experience with databases or artificial intelligence. With a low barrier
to entry, users actively participate in model training, evaluation, and deployment. Hydra is
under active development with dedicated efforts to enhance its core capabilities, especially
in regards to interpretability and trustworthiness. Continuous updates to the front end inter-
face, driven by user feedback, underscores the commitment to providing a system that can
seamlessly integrate with humans and optimize the quality of the data taken at Jefferson Lab.
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