Kubernetes for the Deep Underground Neutrino Experi-
ment Data Acquisition

Pierre Lasorak!>*, Tiago Alves', Gordon Crone?, Enrico Gamberini’, Jonathan Hancock*,
Bonnie King®, Patrick Riehecky’, Alexander Tapper', and Alessandro Thea® for the DUNE
Collaboration

'Tmperial College of Science Technology and Medicine, London SW7 2BZ, United Kingdom
2University College London, London WCI1E 6BT, United Kingdom

3CERN, The European Organization for Nuclear Research, 1211 Meyrin, Switzerland
4University of Birmingham, Birmingham B15 2TT, United Kingdom

SFermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

6STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

Abstract. The Deep Underground Neutrino Experiment (DUNE) is a next-
generation long-baseline neutrino experiment based in the USA which is ex-
pected to start taking data in 2029. DUNE aims to precisely measure neutrino
oscillation parameters by detecting neutrinos from the LBNF beamline (Fermi-
lab) at the Far Detector, 1,300 kilometres away, in South Dakota at the Sanford
Underground Research Facility. The Far Detector will consist of four cryogenic
Liquid Argon Time Projection Chamber detectors of 17 kT, each producing
more than 1 TB/sec of data. The main requirements for the data acquisition
system are the ability to run continuously for extended periods of time, with
a 99% up-time requirement, and the functionality to record both beam neutri-
nos and low energy neutrinos from the explosion of a neighbouring supernova,
should one occur during the lifetime of the experiment. The key challenges are
the high data rates that the detectors generate and the deep underground en-
vironment, which places constraints on power and space. To overcome these
challenges, DUNE plans to use a highly optimised C++ software suite and a
server farm of about 110 nodes continuously running about two hundred multi-
core processes located close to the detector, 1.5 kilometres underground. Thirty
nodes will be at the surface and will run around two hundred processes simul-
taneously. DUNE is studying the use of the Kubernetes framework to manage
containerised workloads and take advantage of its resource definitions and high
up-time services to run the DAQ system. Progress in deploying these systems at
the CERN neutrino platform on the prototype DUNE experiments is reported.

1 Introduction

The Deep Underground Neutrino Experiment (DUNE) is a next generation long-baseline
neutrino experiment based in the USA [1]. It uses a high-intensity, 2 MW neutrino beam
produced at Fermilab. Neutrinos are detected in a Near Detector complex, 0.5 km from the
neutrino creation point, and at a Far Detector, in the Sanford Underground Research Facility,

*Presenter, e-mail: plasorak@imperial.ac.uk

1,300 km away. Figure 1 illustrates DUNE. The main physics goal of DUNE is to precisely
measure neutrino oscillations. Doing so will allow DUNE to detect a non-zero leptonic vi-
olation of Charge Parity (dcp), which would have tremendous importance to understand the
matter/anti-matter asymmetry of the universe. DUNE will also be able to measure the neu-
trino mass ordering. Besides neutrino oscillations, DUNE will be able to detect supernova
burst neutrinos, and to shed light on various beyond the standard model processes.

Sanford Underground
Research Facility

Fermilab

NEUTRINO
PRODUCTION

PARTICLE
DETECTOR

UNDERGROUND
PARTICLE DETECTOR

Figure 1. The Deep Underground Neutrino Experiment (DUNE). Neutrinos are produced by impinging
an intense proton beam from Fermilab’s Proton Accelerator to a target. The neutrinos flux and cross
sections are characterised at the Near Detector and will travel 1,300 km to the Sanford Underground
Research Facility where the Far Detector will detect the oscillated flux.

The DUNE Far Detector (FD) will be located 1.5 km underground. It will be composed
of 4 cryogenic modules of 17 kT of liquid argon each. The location of the cavern and un-
derground environment constrain the access to the experiment and the power and the cooling
available to the data acquisition (DAQ).

The DUNE FD will use the Liquid Argon Time Projection Chamber (LArTPC) technol-
ogy to detect neutrinos. An illustration of the concept is given in Figure 2. With this concept,
for the first DUNE FD module, the readout wires continuously sample and record data digi-
tised to 14 bits at a rate of 1.95 MHz. For this module, there will be 2560 channels for each
Time Projection Chamber (TPC) unit and 150 TPC units. The total data rate of this module
will therefore be 1.2 TB/sec. Similar rates are expected for other FD modules. The DAQ
needs to handle varying event sizes, corresponding to the geometrical extent and the record-
ing time of the physical events. The event’s sizes will range from O(100) MB to more than
100 TB. Furthermore, the entirety of the data is processed online by high-end CPUs and the
data is buffered for a couple of seconds, pending trigger decisions. This buffer enables DUNE
to both identify supernova neutrino burst events, and to record their precursors interactions.
Finally, DUNE is expected to be active for 99% of the time, as supernova neutrino burst
events can happen at any time, but are very rare. Only one supernova (1987A) ever produced
observable neutrinos to date.

2 DUNE DAQ

The DUNE DAQ [2] is organised in six entities:
e Readout

o Trigger

e Dataflow

e Timing

Sense Wires
U V X V wire plane waveforms

y

Liquid Argon TPC

Cathode N

Plane

—
Edrift

X wire plane waveforms

Figure 2. The Liquid Argon Time Projection Chamber (LArTPC) concept. Ionisation electrons are
produced in the liquid argon. They are drifted by an electric field to the anode which is composed of
sensing wires. Photons are detected by dedicated detectors.

e Data Quality Monitoring (DQM)
e Control, Configuration and Monitoring (CCM)

Each subsystem has different hardware provisioning. The DAQ structure is represented in
Figure 3. The detector electronics produce raw data that gets processed in around 80 Readout
servers located 1.5 km underground in a cavern near the FD. The Readout applications buffer
the data and produce Trigger Primitives (TPs). TPs are small-size data objects containing
information about charge depositions in the readout detector, or photon hits. The TPs are
passed on to the Trigger applications, which are distributed over 20 servers underground.
The Trigger uses the TPs or the beam synchronisation infrastructure from the Timing system
and forms Trigger Decisions (TDs). These TDs are forwarded to the Dataflow subsystem (10
servers, on the surface). The Dataflow requests data from the Readout applications which
fetch it from their buffers and send it to the Dataflow. It is the Dataflow’s responsibility to
write the triggered data to disk. An additional process called the data filter is run on the
written files to further exclude background events. In parallel, continuous monitoring of the
data at different stages (Readout, Trigger and Dataflow) is done by the DQM subsystem. The
whole DAQ relies on the CCM subsystem, which provides a set of standardised tools and
orchestrate the DAQ. Thirty servers, located underground, are expected to host the DQM and
CCM services.

3 Kubernetes for DAQ

Given that the DAQ will employ multiple types of server with varying specifications and run
around two hundred processes on them, it is interesting to investigate advanced techniques
for scheduling processes and managing the resources available. Kubernetes [3] is a modern,
industry-standard container orchestration tool. It is used in data centres, which have high up-

External DataQuality | _____ |
trigger Monitoring
'
'
External '
T (™ I Xt S, Y
interface
Timing r Trigger Data Filter |« |
GED HS events
. Trigger decisions /
- Trigger
Synchronize l primgi‘gives Trigger completed
Get next TR
Hardware HW signals |_| Trigger
signals _ - _y interface Records
'
Detector "
electronics Raw date—> Rsadout Tesponse Dataflow Data files Offline
f il i
! | Tri d !
99 '
calib/dbg data stream i

Control, configure, monitor

DAQ Computing
Infrastructure

Control, Configuration and

Monitoring System Slow Control

Figure 3. The organisation the data acquisition for the Deep Underground Neutrino Experiment.

time requirements. It handles the scheduling of containers, resource management, networking
and automated recovery actions.

To facilitate the discussion, we separate the DAQ components in two categories: the DAQ
services and the DAQ applications.

3.1 DAQ services

DAQ services are DAQ processes that need to run while the DAQ is taking data or prepar-
ing to take data. These processes are not directly involved in the data readout, triggering, and
recording. The services are generally third-party open-source tools (for example, Grafana [4],
PostgreSQL [5]), or simple microservices (generally written in python) that the DUNE-DAQ
group has developed. These services enable the archiving of the run time conditions, mon-
itoring, alarms and specialised messaging. As an example, the monitoring chain used for
the prototype DUNE detector (ProtoDUNE), at CERN, is displayed in Figure 4. Monitoring
relies on services for user interfaces and the archiving of log messages and metrics. In the
current scheme, DAQ applications send metrics and logging information to a Kafka broker.
Two microservices are connected to the broker and consume the metrics and logs and store
them in dedicated long-term databases. Both the microservices also provide data to the user
interface (Grafana). Grafana also directly consumes data related to server monitoring via
Prometheus.

Deploying services with Kubernetes has already proven to be efficient, as it enable mon-
itoring of the services through the Kubernetes dashboard (see Figure 5) and a single point-
of-entry to manage the services via the kubectl command. It also enables packaging of the
services such that they can be used at different test-stands (at Fermilab, CERN and different
universities) with a minimal set up using the Kind tool [6].

=N

/ Node

-
- e
Postgres ! * o

\ —
Prometheus Prometheus
\ data

Error
| > DB uSVC |
N y /
(DAQApp Broker Grafana —>

Metrics
DB uSVC

Figure 4. DUNE DAQ monitoring, used for ProtoDUNE data taking. Red circles are the source of the
data for monitoring; green boxes are third-party tools; orange boxes are DAQ-specific are microservices;
white cylinders represent databases. Most of the databases and services are handled by Kubernetes.

kubernetes monitoring ~ Q Search + A 8
= Workloads > Deployments

Workloads @ Deployments =

Cron Jobs

N Lab a: Created * "

Daemon Sets

e — © kefkainflux - 1”1 2menths age

Jobs @ prometheus-deployment app: prometheus-server 11 5 months.ag0 prom/prometheus

Pods

- Q@ eskaie - 1”1 6months age

Replication Controllers @ influxdb - 11 6 months ago influxdb:1.8

Figure 5. An excerpt of the Kubernetes dashboard, enabling monitoring of the DAQ services.

3.2 DAQ applications

Cluster architecture

DAQ applications provide the core functionality of the DAQ. They are written in a specialised
C++ framework [7] and use a highly efficient and optimised modular code base. DAQ appli-
cations are spawned at the start of each DAQ session. A DAQ session represents a coherent
data taking system composed of multiple DAQ applications interacting with each other to
record detector data. Depending on the environment, DAQ sessions can be long or short
lived. To run DAQ applications in Kubernetes, we decided to create a different cluster from
the services cluster described above, so that potentially CPU-intensive tasks from the DAQ
applications would run on different servers and not interact with the DAQ services. A de-
piction of the current, prototype DAQ application integration inside the Kubernetes cluster
is shown in Figure 6. Process management is handled via the run control application, which
directly interacts with the control plane of the cluster via Kubernetes’ python bindings. Each
application runs in a Kubernetes Deployment and the DAQ application binary is executed
inside the container. To avoid name clashes, the Kubernetes Namespace is the DAQ session
name. Thus, one can run many DAQ sessions at the same time in the same Kubernetes clus-
ter. Raw data storage is handled outside of the Kubernetes cluster, simply by mounting the
disk on which the data is written in the container. The Kubernetes Domain Name System

(DNS) is used by the applications to resolve their own IP addresses and those of the other
DAQ applications that they communicate with.

K8s cluster

T O
Control plane node @

g K8s control
plane

% Run control

4 Generic nodes o

@ DFO pod

Timing app DFO app Trigger app

Timing pod Trigger pod

. J
/ Readout nodes

Readout pod @
>

Readout app

Dataflow app

M' -

Figure 6. Run control and DAQ applications interactions with the Kubernetes cluster

Readout application

The Readout applications require special attention since they require at the same time:
e Fast network I/O to handle the throughput from the detector;

e High-end CPU to process the data and create TPs in quasi-real time;

e Fast and large disk access to enable the recording of the raw data in case of a supernova
neutrino burst trigger.

To overcome these challenges, the DAQ group decided to use high-end Commercial Off
The Shelf (COTS) Network Interface Cards (NICs) to interface the detector electronics. Pow-
erful multi-socket servers will be used to process the data online, along with Solid State Disks
(SSDs) for the raw data recording. Each of these hardware components require careful tuning
to achieve the required performance. For example, the NIC places the raw detector data on a
specific Non Uniform Memory Access (NUMA) RAM region which needs to be accessed by
the corresponding CPU for processing. Part of our investigation is whether Kubernetes can
provide the tools and configuration required to realise this.

Furthermore, unlike other parts of the DAQ system, the Readout applications are not re-
locatable. One Readout server will be connected to exactly two TPC units in the first and sec-
ond FD modules. Hence, this is an area where the Kubernetes resource management overlaps
with the physical detector. To explicitly match detector topology to Kubernetes resources, we
created a hardware discovery tool based on Kubernetes Device Plugin framework [8]. This
tool is a DaemonSet that runs on all the servers in the Kubernetes cluster. The tool polls the
node interfaces when started, and creates a Kubernetes resource representing the detector if
the node is connected to it. This enables, when scheduling a Readout application to run on

the cluster, to request a Readout resource and be sure that it is connected to the correct part
of the detector.

CVMEFS, image building and distribution

One of the common problems when using a containerised environment relates to software
development. Some of the issues we have encountered are related to the size of the container
image. The DAQ libraries and dependencies are large: in our tests, a complete standalone
DAQ image was roughly 5 GB. Such image sizes constrain the container registry that we can
use (noting that we will not have access to commercial infrastructure) and the possibility of
building an image every time the software is built. One solution is to use a CVMFS or a
Network File System (NFS) mount in the DAQ application container to share the software.
We still need to investigate whether this solution is acceptable for the final FD DAQ.

4 Conclusion

Initial tests integrating some components of the DUNE-DAQ within Kubernetes were suc-
cessful. The DUNE-DAQ group plans to adopt Kubernetes and use a containerised environ-
ment for its services (monitoring, run archiving, etc.). More investigation is needed to decide
whether DAQ applications will run in a dedicated Kubernetes cluster. Kubernetes solves
many problems related to resource and process management, and networking becomes much
simpler at the application level due to the Kubernetes DNS. There are, however, still many
challenges to be resolved before a decision is made to adopt it: we have not fully quantified
overheads related to the containerisation of the applications, we need to streamline the devel-
opment procedure with containers and finally, some details and optimisation of the Readout
process need to be investigated further.

References

[1] B. Abi et al., Journal of Instrumentation 15, TO8008 (2020)

[2] A. Abed Abud et al., Tech. Rep. EDMS 2812882 (2023)

[3] Kubernetes, https://kubernetes.io/

[4] Grafana Labs, Grafana, https://grafana.com/

[5] The PostgreSQL Global Development Group, Postgresql, https://www.postgresql.
org/

[6] Kind, https://kind.sigs.k8s.io/

[7] DUNE DAQ group, Application framework, https://github.com/DUNE-DAQ/
appfwk

[8] Kubernetes device plugins, https://kubernetes.io/docs/concepts/
extend-kubernetes/compute-storage-net/device-plugins/

https://kubernetes.io/
https://grafana.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://kind.sigs.k8s.io/
https://github.com/DUNE-DAQ/appfwk
https://github.com/DUNE-DAQ/appfwk
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/

	Introduction
	DUNE DAQ
	Kubernetes for DAQ
	DAQ services
	DAQ applications

	Conclusion

