The ALICE Data Quality Control

Barthélémy von Haller'* and Piotr Konopka'** for the ALICE Collaboration

ICERN, Experimental Physics Department, Geneva, Switzerland

Abstract. ALICE (A Large Ion Collider Experiment) has undertaken a major
upgrade during the Long Shutdown 2. The increase in the detector data rates,
and in particular the continuous readout of the TPC, led to a hundredfold in-
crease in the input raw data, up to 3.5 TB/s. To cope with it, a new common
Online and Offline computing system, called O?, has been developed and put in
production.

The online Data Quality Monitoring (DQM) and the offline Quality Assurance
(QA) are critical aspects of the data acquisition and reconstruction software
chains. The former intends to provide shifters with precise and complete in-
formation to quickly identify and overcome problems while the latter aims at
selecting good quality data for physics analyses. Both DQM and QA typically
involve the gathering of data, its distributed analysis by user-defined algorithms,
the merging of the resulting objects and their visualization.

This paper discusses the final architecture and design of the Quality Control
(QC), which runs synchronously to data taking and asynchronously on the
Worldwide LHC Computing Grid. Following the successful first year of data
taking with beam, we will present our experience and the lessons we learned,
before and after the LHC restart, when monitoring the data quality in a real-
world and challenging environment. We will finally illustrate the wide range of
usages people make of this system by presenting a few, carefully picked, use
cases.

1 Introduction

Modern particle physics experiments produce vast volumes of data. Due to the complexity of
particle detectors, as well as the complexity of their associated data acquisition and processing
software, the quality of gathered information has to be thoroughly controlled. Data Quality
Monitoring (DQM) systems are used to quickly spot issues that appear during data taking.
During months or years after, Quality Assurance (QA) systems allow for a more complete
assessment of the suitability of physics data for analyses, which leads to new physics results.

The ALICE experiment recently underwent a major update involving the detector, the
data acquisition system [1] and the data processing framework [2]. It enabled the experiment
to acquire up to 3.5 TB/s of raw data produced by the detector. The new Quality Control (QC)
software framework combines two previously separate systems, DQM and QA, to improve
the code reusability between the two domains and to facilitate the access and the understand-
ing of the results in a consistent way. During data acquisition, it is able to sustain two orders

*e-mail: barthelemy.von.haller@cern.ch
**e-mail: piotr.konopka@cern.ch

of magnitude greater data rates than the previously used ALICE DQM. The QC framework
is based on the common ALICE O? software framework [2]. As a consequence, it makes it
the first of its kind to thoroughly rely on message passing and actor model.

The Quality Control is used in two substantially different environments. During syn-
chronous data acquisition, it’s distributed across approximately 500 nodes at the experimental
site, alongside particle collision reconstruction. Asynchronously, during the second phase of
data preparation for physics analyses, it operates within a computing grid, overseeing thou-
sands of data reconstruction tasks. Moreover, the Quality Control plays a role in validating
processing and physics results by managing simulated data production and reconstruction,
also on the computing grid.

In this paper, we describe the new ALICE Quality Control framework, focusing on al-
lowing it to run in two vastly distinct environments. Also, we share experiences from its first
year of operation.

2 Design and Architecture

The system is designed to provide operators and experts with a high-level quality assessment
of the 3.5 TB/s data produced by the detector. Through a multi-step process (summarized in
Fig. 1), the system extracts information and knowledge about the quality of the data being
acquired and the underlying processing.

The initial step consists in sampling the data, usually at a rate of 1%. QC Tasks will then
execute user-defined algorithms to process it and generate a QC Object, often a histogram.
Data types available in the ROOT framework [3] are typically used as QC objects. Given the
parallel nature of this processing, with a copy of the task running on each of the hundreds of
nodes, these histograms are then merged. Finally, the merged results are evaluated by a series
of Checks to determine one or several Qualities, which can themselves be aggregated to give
a general assessment of the health of the data. Both QC Objects and Qualities are stored in
a repository based on the ALICE Calibration and Conditions Database [4].

The QC system is based on a message passing paradigm where data flows asynchronously
through a set of devices connected via buffered channels. The channels use ZeroMQ [5] by
passing either the whole message payloads or just pointers to the shared memory region. The
connections can be blocking or non-blocking. The QC software is part of the Online-Offline
(0?%) computing system [6] and it shares a common message-passing framework with it [2].

This design allows us to split computations across thousands of nodes during synchronous
processing. If one Merger process cannot sustain the output data throughput of all the parallel
QC tasks, data reduction can be performed in several steps, as shown in Fig. 2. In the first
layer, input data throughput is shared among multiple Mergers and then further reduced until
a complete set of objects is obtained. Each actor publishes its most complete result in regular
intervals, thus, with each new layer an additional delay is introduced.

When running the software in an asynchronous environment, combining the output of
hundreds of subjobs sequentially may take a substantial amount of time. Thus, the processing
can be drastically sped up by dividing the merging into several layers, as in the synchronous
context, but with intermediate results stored as files. Additionally, since grid jobs sometimes
suffer from challenging running environment (temporary lack of memory, processing node
faults), they are more likely to fail. Restarting a smaller batch of operations takes a smaller
toll on the total latency and the computing resources usage.

The Data Sampling component brings a convenient way to reduce the load on the sys-
tem when running with limited resources and quick data quality feedback is preferred over
having complete statistics. During data taking, only a few lightweight tasks which require
100% of the data stream do not use sampling, while all the rest receive between 1 and 10%

ALICE Detectors - Qc

i QC Object
2 Local ’W‘ ‘ Quality
2 Aggregation algorithms Physics data
8 Obiject + Quality
& i """"" ’” el @gizEs]‘ T [02 Dataflow] Sampleddaa ~ T 7T >
K) 1
3
4
i

Processing I_ _____ ———— : Quality Control Nodes
]
""""""""" | "
| Machine
: Data samples - - - l Learning
Time-Frame | | ’f
Building : |
i ~3t Checkers |
| H -
A I = [
Processing |- — — — — Toooodh »DIF _A" RQC > %— >
el | g
= : Aggregators A T
|
|
|
|
|
|

Event Processing Nodes
web clients

,,,,,,,,,,,,,,,, Synchronous ...
‘Asynchronous
! |

9

z

N l

w Peeeeeeees Local QC tasks [~ 1 g
R
g [[roomw | .

O}

Mergers

o Merger }

.

_

Merger

T
L layers

Figure 2. A multi-layer topology of Mergers.

of messages. If a given task becomes too resource-hungry, its sampling rate can be easily
reduced at the cost of obtaining a lower statistical significance of the results. During asyn-
chronous reconstruction, most of these tasks can process the complete statistics, as long as
their computational resource usage is within the expected budget.

3 Experience during the first year of operations

The Quality Control has been used throughout the commissioning and, subsequently, the first
year of operations. Every subdetector in ALICE has developed one or several tasks, both for
synchronous and asynchronous processing. After a year, almost 180 QC tasks have published
34’000 objects with thousands of versions each (see Table 1 for details).

3.1 Performance

In the O? system, the maximum data throughput of the processing topology can be treated
as the throughput of the slowest processing step. Detailed benchmarks of each potential
bottleneck were presented in [7]. It was shown that the Dispatcher can sustain around 100,000

Sync data | Async data Simulation
Tasks 121 35 23
Checks 69 8 2
Objects paths 17817 8263 7812
Objects versions | 10 million 2 million | 2.75 million

Table 1. Number of tasks, checks, and objects after 1 year of data taking (April 2023).

100% 400
90% 350 obbirshaminpest- A DA e
L
%60% 2250
2 o
& 50% | 200
% 40% MWWU\WMIJW‘QO w % ‘W M MV w A E 150
g 0% ‘ § 100
20%
10% 50
00/go:oo 02:24 0448 07:12 09:36 12:00 14:24 80:00 02:24 04:48 07:12 09:36 12:00 14:24

[Data-taking run duration [hh:mm] Data-taking run duration [hh:mm]

Figure 3. Performance of Mergers for the Time Projection Chamber’s QC Tasks. On the left side the
total CPU usage is shown, on the right one can find the total input data throughput.

messages per second when rejecting all, regardless of their size. When sampling, it can reach
over 2 GB/s of data throughput for payloads in the range of [256 kB, 1 GB]. A single QC Task
instance can be provided with 5 GB/s of data split into 2 MB messages, excluding the time
needed for actual processing done in the user code. One Merger can process more than 2600
histograms per second with 62500 bins and a size of 250 kB.

In Fig. 3, we show an example of Mergers’ performance observed in the production sys-
tem. In this case, the merging topology is split into two layers, the first consisting of 3 Merger
instances, which split the load equally. Such a configuration guarantees that the processing
chain is sufficiently efficient without the risk of inflating input buffers with too many mes-
sages.

The new ALICE computing system read out 2000 PB of test and physics data during 2022
[8]. The data Quality Control system took part in the majority of test runs and all physics
runs. Until April 2023, QC took part in asynchronous reconstruction of 192 physics runs,
where most were processed a few times. In total, QC was enabled in 551,399 jobs.

We expect further increase in the number of tasks and objects. Since computations of
separate tasks run independently, adding new tasks is trivial if CPU and network resources
are available. Tuning the merger process topology allows for an increased number of objects.
However, one has to monitor the number and size of objects stored in the repository, which
we do by periodic detector code reviews and automated obsolete object cleanups.

3.2 Objects merging

Reducing large portions of data into merged objects presents several challenges during syn-
chronous processing. On the one hand, minimizing the number of Merger processes is pre-
ferred due to the additional overhead each creates in terms of CPU and memory usage. On
the other hand, when input messages reach the worker simultaneously (as shown in Fig. 4),

Source A | o O <>
SourceB | & <o <>
Source C | < o o o
Source D <>: o <>1 <>
Merger | & o o >

Source A & O (o3

Source B <o & &

Source C | o fo &

SourceD | < & & &
Meger | & o o o

I time

Figure 4. Data sources publish objects at the
same time.

I time

Figure 5. Data sources publish objects in shifted
intervals.

input buffers grow larger, requiring temporary storage of all the messages that have not been
processed yet. As a result, a computing node might run out of memory and might have to
resort to killing processes.

In the QC framework, this problem is avoided in two ways. Primarily, input buffer sizes
are configured to store the minimal possible number of messages allowed by the message
queue library [5], which is one per connection. Still, despite this, additional messages might
be stored by the underlying transport layer (TCP in this case), contributing to the total mem-
ory usage. When serving hundreds of nodes, each hosting a few tasks publishing payloads
of dozens of MB, the peak usage may reach hundreds of GB. To mitigate this effect, data
sources publish messages in regular intervals, but shifted in phase (Fig. 5). This way, the load
on Mergers is distributed more evenly in time, reducing the need to queue the messages in
input buffers before they are processed. However, since the data sources are purposefully not
synchronized with the Mergers, the complete plots may contain uneven numbers of entries
in different parts. An end-user, like a shifter in the experimental control room, may interpret
this as if some parts of the particle detector saw less activity than the rest.

3.3 System monitoring

A single computing node hosts a processing topology, which can be imagined as a directed
acyclic graph consisting of up to a hundred processes exchanging data messages. The whole
system is made of hundreds of these nodes. Operating such a highly distributed processing
system makes it a challenge to understand the dataflow and finding the root cause of issues.
For example, one can struggle to determine which graph node blocks the processing by being
too slow or in an unhealthy state when the whole system is stuck. In such case a shifter usually
can only restart the data taking, while an expert has to carefully inspect the logs and metrics
or use a debugger to track down an issue. Moreover, when running such jobs on a computing
grid site (asynchronously), one usually cannot inspect the process topology while running,
but can only investigate it post-mortem, which brings an additional difficulty. Thus, the sys-
tem operators and developers must be provided with enough, but not overwhelming, amount
of logs and performance metrics which can be browsed with accessible tools in order to
understand an issue. We are developing an interface to visualize the dataflow between the
processes in real-time in large production setups.

3.4 Dependencies

In the LHC Run 1 and Run 2 the dependencies of the DQM were few and well under our
control. With the complexity and size of the O framework, as well as the inter-dependency
of its components, the number of libraries we rely on directly and indirectly has increased by
a factor of four. Although some dependencies are under our control, many more are not. To

RDH sizes for TOF ABC detector data quality
TOF/RdhSizes
20000 Entries 27648 Acceptance : Bad

= Mean 6400
Std Dev 3353
. Flag: Limited Acceptance: Missing data for sector A1
15000(—

Inform ABC oncall immediately!
10000

Calibration : Good

5000 | e bbb
C XYZ detector data quality

0 . . | . | | , |
0 2000 4000 6000 8000 10000 12000 14000 I%GIODO
Vies

Acceptance : Good

Calibration : Good
Figure 6. A plot produced by the general-use
Data Acquisition Task, displaying distribution of ~ Figure 7. Quality summary page generated by
Raw Data Header size in received data payloads. the Quality Task.

Vertex Z trend [cm] MIP Qo TPC Mean dEdxTot of MIP tracks per sector
9 =
§ E - 2
£ s s
N E k4
3 T 3
6
s=
A
£
2E
E x
=N !ll):
E i i
£ I * e
B L e L L L =
505000 510000 515000 520000 525000 530000

meta.runNumber

Figure 9. A trending plot where each line is de-
rived from a separate slice of an input histogram.
Courtesy of Marcel Lesch and Berkin Ulukutlu.

Figure 8. A trend of the collision vertex in the
beam axis generated by the Trending Task.

ensure the stability of our software despite this situation, we extensively utilize testing and
Continuous Integration. Each Pull Request is tested on several platforms, and nightly builds
are carried out along with functional and full system tests on our staging setup. This way,
a version change in a dependency is tested extensively as soon as it is introduced.

3.5 Code reuse

Currently, there are 19 subsystem modules which correspond to either an ALICE sub-detector
or a processing system component. They are developed by teams from institutes around the
globe consisting of just one up to a dozen people, who might have a lot or limited experi-
ence in software development. To even out manpower inequalities of the contributing teams,
several tasks are available for general use.

The Data Acquisition Task processes information available in raw data headers of any of
the ALICE sub-detectors and displays the statistics in histograms, such as in Fig. 6. It is
particularly useful as a plug-and-play task to use during early commissioning when there are
no custom low-level tasks developed for a given sub-detector.

The Quality Task (Fig. 7) generates a canvas summarizing the selected Check results and
adds a configurable message for the shift crew according to particular data quality. It was de-
veloped in collaboration with Andrea Ferrero (a Muon Chambers expert) and Marcel Lesch.

ITS2 standalone tracks - run 534125
AngularDistribution 008 oF —]

7E
0.007 -5
0.006 &
0.005 Fo o
0.004 3 !:
0.003 E ‘.—
=

0.002

0.001

Figure 10. An acceptance hole in the layer 3 of
the Inner Tracking System. Courtesy of Rik Spi-
jkers and Ivan Ravasenga.

Figure 11. Vertex point shift seen in the Inner
Tracking System. Courtesy of Rik Spijkers and
Ivan Ravasenga.

| e ST |
o e) o e e |
=]
FAII Wk
et 10*

Figure 12. Visualization of hit rate (kHz) in the whole tracking system of the ALICE Muon Spectrom-
eter. Each rectangle represents one muon tracking detector. Color code is proportional to rate (max.
1 kHz). The left plot shows the standard noise levels, the right plot demonstrates an increased noise.
Courtesy of Andrea Ferrero.

The Trending Task (Fig. 8) allows users to create trends and correlations of any other ob-
jects generated within the QC framework. It reduces the input objects into a set of commonly
used statistics, stored in a ROOT’s TTree and visualized with the TTree: :Draw interface.
Applying it does not require developing any additional code; preparing a configuration file is
sufficient.

One of the Time Projection Chamber module developers, Marcel Lesch, contributed an
extended version of this task (Fig. 9). It lets users slice input plots into several parts and
compute relevant statistics for each of those. Thus, it allows to trend observables of each
detector sector independently.

In a typical physics data-taking run there are 19 instances of Trending Task, 4 instances
of Slice Trending Task and 5 instances of Quality Task running.

3.6 Usage examples

The Inner Tracking System (ITS) is the vertex and tracking detector in the ALICE experi-
ment. Their QC team runs 5 different tasks during data taking. One of the plots produced by
the Tracks task is shown in Fig. 10. It visualizes the angular distribution of tracks seen by
ITS. In this case, one of the staves was not providing data, which appeared as a dip in a small
range in the ¢ axis. Fig. 11 illustrates the standalone track distribution of the ITS. During the
concerned data-taking run, the shift crew spotted an asymmetry in 7 due to the vertex point
shifted by 36 cm in the z-axis.

In Fig. 12, one can find plots visualizing the hit rate in the Muon Spectrometer. The
Task which generates these histograms processes 100% of acquired data, which is essential
for efficient detector diagnostics and allows to spot issues that normally go unnoticed when
observing raw data rates or calibration data. In this case, the detector experts could discover
a low-frequency, high-amplitude electronics noise, as seen in the plot on the right.

4 Future developments

Having the necessary core functionalities implemented, the future developments are driven by
the continuous feedback from the users, the modules developers and the Run Coordination.

One key feature we plan on introducing next year is the possibility of storing reference
data and comparing the QC objects with them. Moreover, we plan on leveraging the QC data
we have produced until now by using Machine Learning to detect abnormal situations.

Major research efforts will be put into developing automatic procedures to let the user
analyse only the parts of data acquisition runs which consist of good-quality data. Thus,
instead of discarding runs which consist of both good and bad data, one will select the good
and bad time intervals. Tagging good-quality data will require additional post-processing
steps to combine quality flags issued automatically and manually, and then derive a global
quality for a given data set.

5 Conclusion

The new ALICE data Quality Control system brings together two previously distinct worlds:
one involves monitoring data quality during acquisition, while the other offers comprehensive
feedback during the subsequent reconstruction process. Its viability, efficiency and usefulness
had been confirmed during the detector commissioning in the years 2020-2021 and then while
taking physics data.

To our knowledge, this is one of the largest data quality control systems worldwide. It is
also the first in the high energy physics community to leverage the message passing technique
and the actor model to such an extent. We hope that the experience shared in this paper will
be useful for designers and developers of similar distributed processing systems.

References

[1] V. Barroso et al., The new ALICE Data Acquisition system (O2/FLP) for LHC Run 3, in
Proceedings of the CHEP 2023 conference (to be published) (2023)

[2] G. Eulisse, D. Rohr, The O2 software framework and GPU usage in ALICE online and
offline reconstruction in Run 3, in Proceedings of the CHEP 2023 conference (to be
published) (2023)

[3] R. Brun, F. Rademakers, Nuclear Instruments and Methods in Physics Research A 389,
81 (1997)

[4] C. Grigoras, Calibration and Conditions Database of the ALICE experiment in Run 3, in
Proceedings of the CHEP 2023 conference (to be published) (2023)

[5] ZeroMQ, ZeroMQ website (2023), https://zeromq.org/

[6] The ALICE Collaboration, Tech. Rep. CERN-LHCC-2015-006. ALICE-TDR-019
(2015), https://cds.cern.ch/record/2011297

[7]1 P. Konopka, Ph.D. thesis, AGH University of Science and Technology, Cracow, Poland
(2022)

[8] S. Chapeland, Commissioning of the ALICE readout software for LHC Run 3, in Pro-
ceedings of the CHEP 2023 conference (to be published) (2023)

