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Abstract. This work describes an online processing pipeline designed to iden-
tify anomalies in a continuous stream of data collected without external triggers
from a particle detector. The processing pipeline begins with a local recon-
struction algorithm, employing neural networks on an FPGA as its first stage.
Subsequent data preparation and anomaly detection stages are accelerated using
GPGPUs. As a practical demonstration of anomaly detection, we have devel-
oped a data quality monitoring application using a cosmic muon detector. Its
primary objective is to detect deviations from the expected operational condi-
tions of the detector. This serves as a proof-of-concept for a system that can be
adapted for use in large particle physics experiments, enabling anomaly detec-
tion on datasets with reduced bias.

1 Introduction

The sensitivity of modern high-energy physics experiments to New Physics is often limited
by the hardware-level triggers used to select data online, resulting in a bias in the data
collected. However, an online filtering stage is commonly needed to reduce the enormous
throughput of complex data the detectors produce to make it manageable from a storage
and offline computing perspective. Therefore, the deployment of efficient data acquisition
systems integrated with online processing pipelines is instrumental in increasing the
experiments’ sensitivity to the discovery of any anomaly or possible signal of New Physics.
In designing such systems, combining heterogeneous processing elements, including Field
Programmable Gate Arrays (FPGAs) and General Purpose Graphics Processing Units
(GPGPUs) [1], is key to sustaining the large throughput of unfiltered raw data.
In this work, we present the first implementation of an end-to-end infrastructure that
continuously acquires data from an experimental setup and processes it online, looking for
statistical anomalies using machine learning. The goal is to develop and test a pipeline
performing, as a first example, data quality monitoring (DQM). However, the final target of
this project is to use this system to perform anomaly detection for new physics searches on
large particle physics experiments. The infrastructure described in this paper is deployed
at the INFN Legnaro National Laboratory (LNL). It reads out data from a reduced-sized
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version of the drift tube muon detector of the CMS experiment at CERN [2, 3]. An FPGA
is in charge of collecting the data stream, clustering signals associated with the passage
of a muon through the detector and producing candidate stubs [4]. Candidate events are
then reconstructed, and all muon hits, along with muon stubs, are analyzed online by an
algorithm deployed on a GPU to perform unbiased data exploration and statistical anomaly
detection. The New Physics Learning Machine (NPLM) [5, 6] technique is used to evaluate
the compatibility between incoming batches of experimental data and a reference sample
representing the expected behavior of the data under standard detector conditions. In the
specific case of the LNL test stand, the NPLM algorithm uses as a reference sample a dataset
gathered in normal detector conditions; deviations from the normal behavior, if detected, are
characterized and statistically mapped to known sources of detector malfunctioning within
a given degree of confidence. Unexpected behaviors that might signal the presence of new
anomalies can be singled out if the observed discrepancy doesn’t match any of the expected
detector malfunctions.

2 Experimental setup

The pipeline described in this work reads and processes the digitized signals produced by a
muon telescope composed of a set of drift tube (DT) detectors. The DTs used in this work
were built at the Legnaro National INFN Laboratories and inspired by those used in the CMS
experiment, with which they share the same underlying design and configuration. These de-
tectors are designed to provide a small footprint ( roughly 70×70 cm2) muon tracking system.
They can be deployed in a number of different configurations, such as a muon spectrometer
in conjunction with a magnetic field, or as a telescope for cosmic muons. Each DT cham-
ber comprises 4 layers of 16 cells, totaling 64 cells per chamber. The signals produced by
each cell (referred to as hit) are amplified, discriminated, and shaped according to the LVDS
standard. Two Xilinx VC707 evaluation boards are used to implement the time-to-digital con-
version (TDC) of the hits, where each VC707 receives signals from 128 DT channels. The
data stream of each VC707 board is serialized with the GBTx-FPGA protocol [7] and trans-
mitted via optical links to a Xilinx KCU1500 evaluation board mounted on the PCI express
Gen-4 bus of a server where the processing and anomaly detection application is run. The
server is a Dell PowerEdge R750 equipped with 2xIntel Xeon Gold 5318Y CPU @ 2.10GHz
and 16×16GB DIMM DDR4.

3 Reconstruction and data preparation

Hits are received by the KCU1500 and deserialized before being processed in two stages.
First, the local reconstruction of the muon segment is performed on the back-end evaluation
board using a neural network-based algorithm. Hits and segments are merged into a single
data stream and transferred to the server memory through Direct Memory Access (DMA) to
avoid burdening the server CPU. In the second stage, a GPGPU is used to perform the data
preparation for the anomaly detection application.

3.1 Muon reconstruction on FPGA

The first reconstruction stage aims at identifying the time of passage of the muon, as well as
its local position and crossing angle. Leveraging on the constant drift velocity inside each
cell and the staggered geometry of the layers, the generalized mean-timer technique [8] can
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Figure 1. Schematic representation of the algorithm for each macro-cell. In the initial grouping, hits
are collected from the stream and positioned in the macro-cell. This is then fed to filtering and dis-
ambiguation blocks where noise is rejected, and the left-right ambiguity is solved. This information is
used to compute the muon crossing time and track parameters.

be used to find the absolute time of passage of a particle by combining the time information
of 3 or more hits. However, a left-right ambiguity with respect to the wire position is present
and needs to be solved in order to solve the equations and find the track parameters. The
reconstruction algorithm implements a “hybrid method”: two neural networks are used to
filter hits and assign the correct laterality pattern starting from the hits time and channel in-
formation. Once the correct hit and laterality combination is found, the mean-timer equation
univocally associated with that specific pattern is used to find the track parameters. Without
the neural networks, all the possible pairs combination-equation need to be probed, resulting
in a large combinatorial. A diagram of the algorithm is shown in Figure 1. The first module of
the algorithm, called initial grouping, collects hits from the continuous stream and organizes
them in time-coherent 4 × 4 macro-cells, a set of neighboring cells fully containing all the
possible patterns of a muon. Each macro-cell is then fed to the neural network blocks. The
first, filtering, retains only the hits produced by the passage of a muon. The hits passing the
filtering step are then processed by the disambiguation network, where the correct laterality
is predicted. From here, the crossing time t0, intercept x0, and slope m are computed.
To reduce the FPGA resource utilization, models were trained using QKeras [9][10] and iter-
atively pruned during the training phase. Finally, the package HLS4ML [11][12] was used to
produce the High-Level Synthesis code for the models. The inference time of the two neural
networks is 2 clock cycles at 40 MHz each, i.e., 50 ns. However, the system is a pipeline
with an initiation interval of 1, meaning that a new input can be accepted every clock cycle.
Moreover, the aim of this stage is to enrich the stream of hits with the reconstructed stubs and
not to filter as a trigger would do.

3.2 Data preparation on GPGPUs using Rapids

After the reconstruction, all the hits and stubs are transferred to the server memory via DMA.
Before being fed to the NPLM algorithm, they need to be aggregated and reformatted. This
pre-processing consists mainly of identifying events, e.g., time slices containing muon stubs,
filtering spurious hits, and computing new higher-level quantities describing the event. This
can be performed leveraging distributed computing frameworks using dataframe-like data
structures and operations, as it has been described in [13]. This task can be further acceler-
ated using GPGPUs thanks to CUDA dataframe (cuDF) library implementation in NVIDIA
Rapids [14]. The cuDF library, built on top of Apache Arrow columnar memory format,
is used to perform dataframe operations on a GPGPU. Along with dataframes operations,
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Figure 2. Throughput performance of
the preprocessing algorithm in
relation to batch sizes, measured in
millions of hits. Throughput is
quantified in terms of processed hits
(left y-axis) and gigabytes (right
y-axis) per second of processing time.

I/O for standard data formats such as Apache Parquet is implemented. Moreover, the basic
set of functionalities can also be extended by writing custom kernels using either CUDA or
CuPy/Numba. The processing steps used in this work have been easily ported to cuDF, as
they consist mainly of simple aggregations, filtering, and column-wise operations. The per-
formance of this pipeline stage can be seen in Figure 2. The time needed to read and process
data is measured by changing the batch size, i.e., the number of hits in the dataset processed
together. A throughput of over 2 GB/s is achieved when working with large batch sizes of
the orders of millions of hits. Getting this amount of data from our test setup using cosmic
rays would require running the acquisition for over 2 hour. However, for large experiments,
the same amount of data can be collected in seconds. The goal of online processing is to
reduce data, i.e., computing a higher level representation of the data, to keep the throughput
manageable for the anomaly detection application.

4 Anomaly detection

At large-scale collider experiments, utilizing an unfiltered muon data stream would enable
the exploration of yet-unobserved anomalies, which are commonly filtered away by trigger
systems. For the purpose of testing the full chain implementation on our small-scale experi-
mental setup, we recast this advantage into a DQM framework, in which detecting anomalies
serves as a real-time evaluation metric for the detector’s performance.

4.1 Dataset and anomalies

Following the track reconstruction process, data is transformed from a hit-centric represen-
tation to an event-oriented one. Events are thus defined by their four drift times—one from
each layer—and the crossing angle of the muon with the vertical axis. To mimic the most
common sources of detector anomaly, we then induced potential malfunctions within the sys-
tem. By altering the voltage of the cathodic strips and the front-end thresholds, we introduced
malfunction scenarios at varying intensities: 75%, 50%, and 25% of their typical operational
values. The datasets procured under these anomalous conditions were treated with the same
rigorous processing as those obtained under regular conditions. As part of our data acqui-
sition campaign, we systematically gathered information across six distinct configurations,
capturing approximately 104 events for each setup. Additionally, to establish a robust base-
line for comparison, we collected approximately 3 × 105 events from the detector’s standard
operational conditions.1 The datasets are further discussed in Ref. [15].

1Datasets available at https://doi.org/10.5281/zenodo.7128223.

https://doi.org/10.5281/zenodo.7128223


4.2 Anomaly detection methodology

In data quality monitoring, one aims to assess the operational state of the detector, which has
a direct impact on the quality of the data gathered. This evaluation can be formally framed as
assessing the alignment of a dataset, denoted as D, with the expected statistical distribution
under standard operational conditions, represented as P(x |R). The direct knowledge of the
reference distribution P(x |R), however, is unavailable. We thus exploit a reference dataset R
that stands in for this distribution. Therefore, our method compares the datasets D and R to
see if they originate from the same statistical distribution.
In our investigation, we employ a reference dataset of fixed sizeNR = 2000, extracted from a
larger pool of approximately 3×105 muon data collected under detector conditions labeled as
standard. We then monitor batches of varying sizes, ND = 250, ND = 500, and ND = 1000,
for all the anomalous configurations reported in Section 4.1.

The NPLM approach

To compare a data batch D with a reference sample R, we employ the NPLM algorithm
[5, 6]. This algorithm calculates a test statistic by quantifying the log-likelihood ratio between
the reference hypothesis and the actual, yet unknown, distribution generating the observed
data batches. It does so through a machine-learning model fw(x), which acts as a universal
function approximator parameterized by trainable parameters w. It introduces alternative data
distributions P(x |Hw), deviating from P(x |R) ifD and R stem from different distributions.
The model fw(x) can be constructed using either neural network or kernel methods and trained
using a weighted logistic loss function. Notably, the Falkon library [16][17] significantly
enhances the efficiency of kernel methods. This library employs Gaussian kernels with a
tunable width σ. Furthermore, this library introduces several simplifications that enhance
computation, especially for GPU-based training. Noteworthy among these is the Nyström
approximation, which reduces computational complexity by enabling solutions composed of
weighted combinations of selected data points. These points, termed Nyström centers, are
randomly chosen from input data. The selection of the number of centers, M (M ≤ N), is a
hyperparameter demanding careful consideration. For further insights, refer to Ref. [16].

Hyperparameter tuning

For hyperparameter selection, we rely exclusively on data from the reference working con-
dition to ensure model independence. The tuning process involves the optimization of the
following:
1. The number of centers, M, which balances model expressiveness and training speed, by

seeking the largest M that improves expressiveness without excessive training time.
2. The Gaussian width σ, determined as the 90th percentile of pairwise distances among

reference-distributed data points.
3. The regularization parameter λ, minimized while maintaining training stability.

Calibration and p-value extraction

After hyperparameter optimization, the model undergoes training to adapt its parameters w
to approximate observed data. This yields trained parameters ŵ characterizing the best-fit
hypothesis Hŵ. The test statistic associated with the log-likelihood ratio for a data batch D
and reference sample R is then computed as:

t(D) = 2
∑
x∈D

log
P(x |Hŵ)
P(x |R)

= 2
∑
x∈D

fŵ(x) . (1)
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The numerical value of t(D) has no inherent meaning. To extract physical insights, it has to
be calibrated and referenced to the test statistic distribution under the reference hypothesis,
P(t |R). The test statistic calibration proceeds by considering larger positive values of t as
more likely if the best-fit alternative distribution P(x |Hŵ) fits the data better than the ref-
erence distribution P(x |R). This suggests that D might not adhere to P(x |R). To estimate
P(t |R) empirically, we generate artificial data batches (termed toy datasets) of the same size
ND as real data batches, train the model, and compute t for each. By creating histograms of
t values from toy datasets, we estimate P(t |R). Furthermore, considering P(t |R) approxi-
mated by a χ2 distribution, we fit the empirical distribution of t values to obtain a continuous
test statistic distribution under reference conditions.
To quantify the discrepancy between R andD, we calculate the p-value:

p [ t(D) ] =
∫ ∞

t(D)
P(t′ |R) dt′ . (2)

The p-value measures the likelihood that a reference-distributed batch yields a test statistic
value more improbable (i.e., larger) than the observed t(D).

4.3 Results and Performance

Anomaly detection performance

After calibrating the test statistic in Eq. 1 using toy datasets from the standard detector condi-
tions, we sample (without replacement) a few datasets from each anomaly category and fill a
histogram of the output t(D) values. Then, we compute the p-value of the median of the test
statistic distribution using Eq. 2 and a fitted χ2 distribution approximating P(t |R). Figure 3
shows the NPLM test statistic distribution for the cathodes and thresholds anomalies for the
batch size configuration of ND = 500. Further details are available in Ref. [15].
From these histograms, we observe that the test statistics for anomalous batches, highlighted
in Fig. 3 in shades of red and green for the cathodes and thresholds anomaly classes, respec-
tively, are noticeably distinct from the reference distribution. This distinction validates the
monitoring algorithm’s capability to identify anomalies. To provide a quantitative measure,
we assess the median values of the t(D) distributions corresponding to the 75%, 50%, and
25% anomaly configurations. We find that as the severity increases from 75% to 50% to 25%,
the median of the test statistic distribution becomes progressively larger, increasingly diverg-
ing from the reference t distribution P(t |R). This observed trend quantitatively confirms the
algorithm’s enhanced sensitivity to anomalies with escalating severity of detector failure.
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Figure 4. Left (a): Training time as a function of the training set sizeN for the NPLM algorithm. Right
(b): Throughput, calculated as the number of muon events divided by the average training time, plotted
against the training set size N . Shaded areas represent regions typical for DQM applications and New
Physics searches using NPLM.

Training time performance and scalability

As the natural objective of this work is to extend its deployment to large-scale experiments
with significantly higher throughput, it becomes crucial to evaluate the scalability of training
execution time. Accordingly, we systematically adjusted NR and ND to assess the system’s
performance in handling larger data batches within a fixed latency. We increased the total
event countN = ND +NR in the training set, primarily by increasingNR, while maintaining
a relatively stable ratioND /NR. Subsequently, we tuned the model hyperparameters for each
unique configuration, spanning N from approximately 2 × 103 to 230 × 103, employing the
same hyperparameter selection procedure. We ran the NPLM algorithm on distinct training
sets O(1000) times for each configuration. We use the average training time as our primary
metric. The standard deviation provides additional insights into the variability amongst re-
peated independent training. This approach provided the training time trend relative to the
training set sizeN , as shown in Figure 4a. Although the training time follows an exponential
trend with respect to N , the absolute values of the training times for the range of batch sizes
examined are sufficiently low. This supports the algorithm’s suitability for real-time applica-
tions. Additionally, we determined the throughput by dividing the number of analyzed events
by the average training time. The throughput as a function of N is illustrated in Figure 4b.
We observe that the throughput initially increases for smaller batch sizes, peaks in the range
of 50 000 to 100 000 events, and subsequently decreases. Note that the derived metrics for
training time and throughput serve as benchmarks that are inherently tied to the particular
system configuration and computing infrastructure used in our study.

5 Concluding remarks

The primary objective of this study was the implementation of an online data processing
pipeline for anomaly detection on a trigger-less data stream. As a first example, data gen-
erated by a muon detector is considered. The pipeline architecture comprises a two-stage
data processing flow: an initial local reconstruction executed on an FPGA, followed by data
preparation and anomaly detection stages, both benefiting from GPGPU acceleration. We
leveraged the New Physics Learning Machine (NPLM) algorithm to create a data quality
monitoring application that identifies induced detector malfunctions spanning various sever-



ity levels. The effective implementation of the NPLM algorithm for data quality monitor-
ing using unfiltered, high-throughput data streams suggests its applicability to broader re-
search objectives. Specifically, the same computational pipeline can be adapted to search for
New Physics phenomena in large-scale, high-energy physics experiments. To enhance the
pipeline’s efficiency, several paths for improvement are available. Most notably, future works
will focus on streamlining the data flow from the FPGA to the GPU memory by applying
zero-copy data transfer models.
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