A High-Speed Asynchronous Data I/O Method for HEPS

Shiyuan Ful*, Lu Wang2, Yaodong Chengl’“, Yu Hu', Rui Liv!, Lei Wangl, Shuang Wangl,
Jianli Lin', Haokai Sun', and Fazhi Qi!

Unstitute of High Energy Physics, CAS, 100049 Beijing, China

INational Science Library, CAS, 100190 Beijing, China

3University of Chinese Academy of Sciences, 100049 Beijing, China
4TIANFU Cosmic Ray Research Center, 610041 Chengdu, Sichuan, China

Abstract.

The High Energy Photon Source (HEPS) is expected to produce a substantial
volume of data, lead to immense data I/O pressure during computing. Inefficient
data I/O can significantly impact computing performance.

To address this challenge, firstly, we have developed a data I/O framework for
HEPS. This framework consists of three layers: data channel layer, distributed
memory management layer, and I/O interface layer. It mask the underlying data
differences in formats and sources, while implementing efficient I/O methods.
Additionally, it supports both stream computing and batch computing.
Secondly, we have designed a data processing pipeline scheme aimed at reduc-
ing I/O latency and optimizing I/O bandwidth utilization during the processing
of high-throughput data. This involves breaking down the computing task into
several stages, including data loading, data pre-processing, data processing, and
data writing, which are executed asynchronously and in parallel.

Finally, we introduce the design of stream data I/O process. The primary ob-
jective of stream data I/O is to enable real-time online processing of raw data,
avoiding I/O bottlenecks caused by disk storage. This approach ensures the sta-
bility of data transmission and integrates distributed memory management to
guarantee data integrity in memory.

1 Introduction
1.1 HEPS

The High Energy Photon Source (HEPS)[1] is a significant scientific infrastructure project in
China, constructed by the Institute of High Energy Physics. It has been designed to include
more than 90 beamlines, with 15 beamlines planned for construction in the first phase. The
HEPS will generate a substantial amount of data, as illustrated in figure 1, which will place a
heavy burden on storage and computing resources. Among these beamlines, beamline 7 will
generate the most data, estimated at around 250 TB per day.

*e-mail: fusy @ihep.ac.cn

300
250
250
= 200 200
2 200

=

@
£ 150

Data Volume

100
50 60

50
3 3 1 1 10 5 10 0.2 1 1.2

0
beamline B1 B2 B3 B4 BS B6 B7 B8 B9 BA BB BC BD BE BF

Figure 1: HEPS data volume

1.2 Data storage and formats

During the HEPS experiment, a large amount of raw data is generated, and the data process-
ing is diverse. Therefore, the HEPS storage system is designed with three levels, as depicted
in figure 2. The beamline storage has fast write speed to accommodate the demands of high-
rate raw data generation. The central storage is used for data offline processing, while the
tape storage is designed for long-term data storage. Upon acquisition by the DAQ(Data Ac-
quisition) system, the data is persistently stored in files on the beamline storage via single or
multiple streams, and is also directly transferred to memory for fast analysis to verify the raw
data accuracy. The central storage is employed for large-scale reconstruction of raw data and
can be shared across different experiments. In addition to storing the raw data, it also saves
the derived data generated during processing, requiring high data readout performance. The
data storage duration in the central storage is generally several months, after which the data
will be transferred to tape storage.

— S e
Beamline Central Tape
a\\ DAQ Storage Storage Storage

Figure 2: HEPS storage system

Therefore, the computation in HEPS is divided into two types: stream processing and
batch processing. For stream processing, the data is received from the DAQ’s data stream.
In batch processing, the data is stored in files on disk, currently available in two formats:
HDF5[2] and TIFF.

2 Architecture

The overall I/O architecture for HEPS is as shown in figure 3. This architecture primarily
comprises of three layers: the data channel layer, the distributed memory management layer,
and the I/O interface layer.

The data channel layer is primarily designed for stream processing and is responsible for
receiving data streams from the DAQ. As HEPS includes multiple beamlines, the data channel
layer is capable of efficiently handling multiple data streams simultaneously. Additionally it
can perform some simple stream computing tasks.

The distributed memory management layer is mainly used for storing stream data. This
is due to that certain computational tasks in HEPS requiring the complete collection of data
before they can be executed. Consequently, a large amount of raw data needs to be stored

& o

Online Processing Offline Processing

Unified I/O Interface Layer

Distributed Memory Layer

Data Channel Layer

g —

Beamline Storage Central Storage Tape Storage

Figure 3: HEPS I/O atchitecture

before the computation commences. The memory management layer effectively addresses
this issue and prevents performance loss caused by disk I/O.

The I/O interface layer is responsible for providing a unified I/O interface for compu-
tations. When receiving I/O requests from computational tasks, it determines whether the
data is from the memory management layer or the storage layer, and calls the corresponding
methods to complete the data reading tasks.

2.1 Batch data I/0

In beamline 7, CT reconstruction is the mainly computational task, known as HEPSCT. Dur-
ing the experimental process, scanning the sample generates a large volume of projection
images. The role of HEPSCT is to reconstruct the sample using these projection images,
which consist of numerous grayscale images. The smallest reconstruction unit is a layer
of these images, with each layer comprising the same row of data from different images in
the scanning sequence. And the processing of different units is independent of each other.
Besides, due to memory capacity limitations, the task is divided into multiple batches, with
each batch containing one or multiple units. The HEPSCT task encompasses several steps:
reading, pre-processing, reconstruction, post-processing, and writing the results into storage.
Each step requires varying time for execution, with the read and write operations constitut-
ing the predominant time-consuming steps, as illustrated in figure 4. It is evident that I/O
bottlenecks significantly impact the computational speed.

Using the HEPSCT as an example, pipeline technology has been implemented to alleviate
the impact of data I/O on computational efficiency through parallel asynchronous processing.

Firstly, the computational tasks are analyzed. Asynchronous I/O is used to overlap the
data reading and writing, thereby reducing the overall waiting time, as illustrated in figure Sa.
Secondly, as shown in figure 5b, for the TIFF format, multi-threading is utilized to read a
batch of data, accelerating the data reading speed. As for HDF3, its kernel currently does not
support multi-thread reading. However, its reading can be executed using multiple processes,
and the data can be transferred to computational tasks through shared memory. Additionally,
HDF5 offers various features such as chunking and compression, which also contribute to
accelerating data I/O speed. Subsequently, as shown in figure Sc, since the data in different

wite | 7

Post-process 0.014

Reconstruction . 0.32

f

)
Pre-process
e e
Read
0 2 4 6

Time/s

Figure 4: Time of every step in HEPSCT

computing processes are independent of each other, further efficiency improvements can be
achieved through parallel computing.

before read
I preprocess
[l reconstruction

postprocess

after

I write

time

(a) Asynchronous I/O

read
| preprocess
[l reconstruction
after postprocess

before

time I wite

(b) Multi-thread 1/O

before read

[preprocess
[l reconstruction
after postprocess

- l write
time

(c) Parallel computing

Figure 5: 1/O optimization for batch processing

When receiving a data reading or writing request, the I/O interface can ascertain the
storage location of the data, whether it is in the memory management layer or on disk, based
on the path’s prefix. Distinct namespaces are assigned for different storage locations. When
reading or writing data on disk, users are only required to specify the file directory on the disk
containing the raw data to be processed. The I/O interface automatically determines the data
format based on the file extension in the directory and invokes the corresponding data format

reading function. This approach effectively shields users from the intricacies of underlying
data formats and sources.

2.2 Stream data l/O

In contrast to the batch processing, stream processing eschews the practice of persisting data
to disk. Instead, it directly stores the data in memory for real-time computation. Once the
incoming data meets the computational requirements, the processing tasks are initiated.

In stream processing, the data is received from the DAQ system in a packaged format,
initially structured as a dictionary type. This package includes metadata and data information,
such as detector status, raw data, and other pertinent details required for stream processing.
These details are then packed using JSON[3] and sent out via ZeroMQ[4].

In our architecture, as shown in figure 6, the data channel layer is designed to receive
the packed data from the DAQ system. It determines the data processing flow based on the
subsequent processing information contained in the data package. The data channel layer
utilizes Flink[5] to submit a job for receiving data via ZeroMQ and awaits the data stream.
Once receiving the data stream, if the current data stream can be computed directly, the cor-
responding processing program will be initiated. If not, the data will be stored in the memory
management layer, awaiting completion before being processed through a distributed com-
puting framework. The memory management layer, based on Alluxio[6], provides compre-
hensive memory management capabilities and presents a unified directory structure to the I/O
interface layer.

Distributed memory =
=
management layer —

il

Stream computing

111

|

cluster

=
{ DAQ —
\ [—y

11
Distributed computing

Data channel layer

Storage

Figure 6: Stream data I/O architecture

3 Conclusion

In response to the challenge that managing the colossal volume of data within HEPS, we
have designed an efficient I/O framework alongside optimization methods. This framework
exhibits the capability to process both stream data and file data, furnishing a unified I/O inter-
face for computations while masking the underlying data disparities. Leveraging distributed
memory management, it adeptly oversees the management of large-scale raw data and en-
hances the I/O speed for various data formats. In the future, this approach will be seamlessly
integrated into Daisy[7], a purpose-built software framework tailored for data processing
within HEPS. The overarching objective is to propel the acceleration of scientific computing
in the future.

References

[1] Q. Fazhi, H. Qiulan, H. Hao, T. Haolai, W. Lu, W. Yanming, Z. Haifeng, Z. Hongmei,
Z. Shan, Frontiers of Data and Computing 2, 40 (18) (2020)

[2] M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, An overview of the HDF5
technology suite and its applications, in Proceedings of the EDBT/ICDT 2011 workshop
on array databases (2011), pp. 3647

[3] json.org, The json data interchange format, https://www.json.org/json-en.html (2023-09-
21)

[4] P. Hintjens, The zeromq guide, https://zguide.zeromq.org/ (2023-09-21)

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas, The Bulletin of
the Technical Committee on Data Engineering 38 (2015)

[6] H.Li, Alluxio: A virtual distributed file system (University of California, Berkeley, 2018)

[7]1 Hu, Yu, Li, Ling, Tian, Haolai, Liu, Zhibing, Huang, Qiulan, Zhang, Yi, Hu, Hao, Qi,
Fazhi, EPJ Web Conf. 251, 04020 (2021)

