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Abstract. The High-Luminosity LHC (HL-LHC) will provide an order of mag-
nitude increase in integrated luminosity and enhance the discovery reach for
new phenomena. The increased pile-up necessitates major upgrades to the
ATLAS detector and trigger. The Phase-II trigger will consist of two levels,
a hardware-based Level-0 trigger and an Event Filter (EF) with tracking capa-
bilities. Within the Trigger and Data Acquisition group, a heterogeneous com-
puting farm consisting of CPUs and potentially GPUs and/or FPGAs is under
study, together with the use of modern machine learning algorithms such as
Graph Neural Networks (GNNs).
GNNs are a powerful class of geometric deep learning methods for modelling
spatial dependencies via message passing over graphs. They are well-suited for
track reconstruction tasks by learning on an expressive structured graph rep-
resentation of hit data and considerable speedup over CPU-based execution is
possible on FPGAs.
The focus of this publication is a study of track reconstruction for the Phase-II
EF system using GNNs on FPGAs. We explore each of the steps in a GNN-
based EF tracking pipeline: graph construction, edge classification using an
interaction network, and track reconstruction. Several methods and hardware
platforms are under evaluation, studying resource utilisation and minimization
of model size using quantization aware training, while simultaneously retain-
ing high track reconstruction efficiency and low fake rates required for the EF
tracking system.

1 Introduction

The ATLAS experiment [2] will be upgraded for the operation at the High-Luminosity
LHC [3, 4] to fully exploit its physics potential. This includes replacement of old and instal-
lation of new detectors [5–7], as well as changes to the trigger and data acquisition system
(TDAQ) [8], such that trigger thresholds can possibly be set as low as they have been during
LHC Run 1. To deal with the increased Level-0 trigger rates, the higher output data rates,
and the larger event sizes compared to previous runs, all three major TDAQ components, the
hardware-based Level-0 trigger system, the Event Filter (EF) system, and the data acquisi-
tion system, have to be upgraded [8]. For the EF system, a heterogeneous computing farm
consisting of CPUs and potentially GPUs and/or FPGAs is under study [9], which could be
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more power efficient than a CPU-only solution. Since most of the computing resources are
needed for the online track reconstruction within the Inner Tracker (ITk) [5, 6], the Event
Filter Tracking (EF Tracking) is the main driver for the system requirements. Within the EF
Tracking project the different hardware accelerators are being explored together with the ap-
plication of novel track reconstruction algorithms and machine learning methods [9]. One of
the approaches currently under study is the application of Graph Neural Networks (GNNs)
and their execution on FPGAs.

2 Track reconstruction with Graph Neural Networks on FPGAs

Over the last years, the suitability of GNNs has been demonstrated for a variety of high-
energy physics use cases, such as jet tagging [10], calorimeter energy measurements [11],
and in particular charged particle track reconstruction [12–18]. Recently, excellent tracking
performance has been demonstrated using ATLAS ITk simulation samples [19]. The work
presented here builds on top of the developments from the Exa.TrkX [13] and GNN4ITK [19]
projects, and makes use of the same track reconstruction pipeline, see figure 1.
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Figure 1. Schematic overview of the GNN-based track finding pipeline [20], which is divided into three
individual steps: a graph construction step, a classification step (edge labeling) using a GNN, and the
final graph segmentation step to isolate track candidates.

The overall goal of the graph construction step is to maximize efficiency for creating
as many true edges as possible, while obtaining a reasonably pure graph by limiting the
amount of false edges. A graph is constructed from the point cloud of detector hits, which
are represented as the nodes of the graph. Two methods for graph construction are currently
available and investigated: metric learning, and module map. In metric learning [19], the
node features are embedded into a latent space using a Multi Layer Perceptron (MLP). Nodes
that are close to each other in the latent space are then connected with edges. In the module
map approach [19], a map of modules is derived from detector simulations, which contains
connections between modules following the trajectories of charged particles in the detector.

The graph is passed through the graph neural network. More specifically, an interaction
network [21] is applied iteratively to the latent features of the graph, which are obtained from
node and edge encoding MLPs. As a last step, the latent features of each edge are transformed
into an edge classification score, which describes the probability that the edge originates from
a true particle track. Applying a threshold to this score, false edges can be removed from the
graph.

Track candidates are then formed by segmenting the graph in the third step of the pipeline.
Sets of connected components are created, and a walkthrough algorithm is applied in case that
multiple paths exist for a specific node.



Energy efficiency and data throughput are essential metrics for any tracking solution cur-
rently being developed for the ATLAS Event Filter system. Previous studies of implementing
graph neural networks on FPGAs for high energy physics applications show a large poten-
tial for speed-up and energy savings compared to CPU and GPU implementations [22–24],
though many of these studies target low latency applications with tighter constraints than
the Event Filter system. However, this does not diminish the challenge of retaining the per-
formance of e.g. the GNN4ITK GPU implementation using potentially smaller models on
FPGAs.

3 Hardware developments: module map and walkthrough

A VHDL implementation of the module map approach is currently under development. The
incoming ITk hit data is decoded into event headers, raw hit data, and module IDs. This
information is stored and used within the Hit Buffers. When the event is fully loaded, the
Output Ranager retrieves the hit data and edges are created according to the content stored
in the Module Map RAM. The edges are then concatenated to create the full event graph,
which can be passed to the graph neural network for processing. See figure 2 for a complete
schematic.

Figure 2. Block diagram of the module map approach implemented in VHDL.

A first version of the walkthrough algorithm has been implemented in VHDL. Prelim-
inary resource estimates have been obtained by synthesizing the design for an Intel Stratix
10 GX FPGA. In this version, a linear scaling between look up tables and graph edges is
observed; 3000 graph edges lead to about 10 percent of look up tables being used. Due to the
preliminary nature of the implementation, optimizations are possible and will be done once
the rest of the pipeline is more mature. For the usage of the VHDL blocks in the full pipeline
for EF Tracking, it is foreseen that they will be wrapped into kernels that can then be included
in the full data flow architecture using the AMD Vitis [25] or Intel OneAPI [26] tools.



4 Model optimization studies: metric learning

A model resource optimization study has been carried out using the metric learning MLP
for graph construction, derived from the Exa.TrkX [27] pipeline. This study follows the ap-
proach of using quantization, i. e. replacing floating-point numbers with fixed-point numbers
of arbitrary bit-width, as used in [22], in addition with pruning, i. e. removing unnecessary
weights from the network, as demonstrated in [28]. The model is implemented with PyTorch
and features four 512 dimensional hidden layers. Each hidden layer consists of a linear layer,
a batch normalization layer, and a ReLU activation function. A fifth linear layer is providing
the final 12-dimensional output.

Quantization Aware Training (QAT) has been introduced into the model by replacing the
linear with QuantLinear layers and the ReLU activation function with QuantReLU from the
Brevitas [29] package. A heterogeneous quantization approach has been chosen, meaning
that individual bit widths can be set for weights and activations in the first, last, and the inter-
nal layers. Weights in all linear and QuantLinear layers can be pruned during training using
an iterative pruning procedure. The L1 loss has been included in the training loss, since it
has been found to improve performance for the model being pruned iteratively. Unstructured
pruning is applied after 180 epochs, or after 10 epochs if the validation loss is stable. A fine
tuning approach has been chosen, meaning that neither weights nor learning rate have been
rewound after each pruning step. Model size has been evaluated by computing Bit Operations
(BOPs) [30], as described in [28], using the QONNX [31, 32] package. BOPs are sensitive
to the bit widths of both weights (bw) and activations (ba), and also the model sparsity due to
pruning (pruning factor fp).

Figure 3. Schematic view of the TrackML detector geometry used for this resource optimization
study [33]. It consists of a pixel detector (blue) close to the interaction point, complemented by strip
detectors (green, red) on the outside.

A sample of 100 events of the TrackML [33] dataset (TJ pair production, pile-up 200) has
been used for this study. The data contains hit cluster position information as well as cluster
energy and directional information derived from the cluster shape, as described in [34]. A
hard pT cut of 1 GeV has been applied to the input data, which reduces training time, but
effectively also reduces the event size significantly. Because of this, and the fact that the
TrackML detector geometry (figure 3) is simpler than the ATLAS ITk geometry, the results
of this study are expected to be optimistic. The study is planned to be repeated with full
ATLAS ITk simulation samples without applying any cut on the input data.

Model performance has been evaluated by computing the purity, defined as the number
of true edges within the graph over the total number of edges within the graph, of the con-



Figure 4. Purity at 98 % graph construction efficiency in the metric learning approach, versus model
size given in Bit Operations (BOPs) per hit cluster to be processed. The results of a scan of the activa-
tions’ bit widths ba in the different layers are shown, with ba ≤ N bit and N representing the largest bit
width of all activations for a particular model. Weights have been fixed at a bit width bw = 8 bit.

Figure 5. Purity at 98 % graph construction efficiency in the metric learning approach, versus model
size given in Bit Operations (BOPs) per hit cluster to be processed. The results of a scan of the weights’
bit widths bw in the different layers are shown. Individual scans for the internal layers (blue dots),
last layer (orange triangle upwards), and first layer (green triangle downwards) have been conducted.
Activations have been fixed at a bit width ba[1] = 7 bit in the first layer, ba[2−3] = 5 bit in layers 2 and 3,
and ba[4] = 6 bit in the last layer.

structed graph at a fixed efficiency, defined as the number of true edges within the graph over
the total number of true edges in the event, of ε = 98 %. This is achieved by varying the
clustering radius in the edge construction step according to the model’s performance. An
optimization study has been carried out, optimizing activations and weight bit widths serially



in independent steps. For the QAT models, the input data is rounded to a 13 bit fixed point
representation (sign + 2 bit integer part + 10 bit fractional part).

Figure 4 shows the purity versus model size in BOPs for different models. In grey the
reference value from the PyTorch model using 32 bit floating point precision is shown. The
colored circles, triangles and squares correspond to a scan of activation bit widths ba in the
QAT model at a fixed bit width for all weights of bw = 8 bit. It is found that the model is quite
sensitive to the reduction of bits for activations. A scan of bit widths for the weights bw has
been performed by fixing the activation bit widths ba, see figure 5. Due to the large hidden
dimensions, largest resource savings are due to a reduction in bit widths in the internal layers.
One can see that BOPs in this case can easily be reduced by a factor of about 100 by applying
QAT without losing too much purity.

Three QAT models have then been chosen and pruned iteratively to further reduce model
size, see figure 6. In all three cases, pruning factors fp above 92 % have been reached before
purity is reduced, which gives a total model size reduction factor of 1000 and more. For
comparison, the PyTorch reference model has been pruned, and a similar pruning factor of
90 % is obtained.

Figure 6. Purity at 98 % graph construction efficiency in the metric learning approach, versus model
size given in Bit Operations (BOPs) per hit cluster that is being processed. Three QAT models have
been chosen and pruned iteratively including L1 loss in the training loss. All three models achieved
pruning factors fp above 92 % without drops in performance. Also the PyTorch reference model has
been pruned, dropping only at pruning factors larger than 90 % .

5 Future work

More work is going on towards the realization of tracking with graph neural networks on FP-
GAs for the ATLAS Event Filter system. While the study presented above is using TrackML
data samples, it will be repeated and extended to the full pipeline using realistic ATLAS
ITk simulation samples. In parallel, reduction of the size of the interaction network simply
by reducing the number of parameters is also under investigation. A comparison between
the two graph construction methods, metric learning and module map, is planned once both
algorithms are available for hardware deployment. Segmentation of the graph into detec-
tor regions is being studied as a mitigation for potential excessive block memory utilization.



FPGA dataflow translation of the MLPs within the pipeline as well as of the interaction net-
work itself have been started with the HLS4ML [35, 36] framework, and are also planned to
be done with FINN [37, 38]. Finally, the goal is to have a fully running GNN based track
reconstruction pipeline on an FPGA. Devices from both vendors, AMD and Intel, are under
consideration for this task.

6 Conclusion

For online track reconstruction within the ATLAS Event Filter system at the HL-LHC, the
application of graph neural networks on FPGAs is currently under investigation. The focus of
the study presented here is set on the graph construction step. Model resource optimization
studies and dedicated hardware implementations are underway. As demonstrated with the
TrackML data sample, significant resource savings are expected to be achieved by exploiting
quantization and pruning. These studies will be followed up by using realistic ATLAS ITk
simulation samples, and by investigating and optimizing the interaction network.
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