
AliECS: a New Experiment Control System for the ALICE
Experiment

Teo Mrnjavac1,∗, Konstantinos Alexopoulos1,, Vasco Chibante Barroso1,∗∗, Claire Guyot1,,
Piotr Konopka1,∗∗∗, and George Raduta1,∗∗∗∗

1CERN, Geneva, Switzerland

Abstract. The ALICE Experiment at CERN’s Large Hadron Collider (LHC)
has undergone a major upgrade during LHC Long Shutdown 2 in 2019-2021,
which includes a new computing system called O² (Online-Offline). To ensure
the efficient operation of the upgraded experiment and of its newly designed
computing system, a reliable, high performance, full-featured experiment con-
trol system has also been developed and deployed at LHC Point 2. The ALICE
Experiment Control System (AliECS) is a microservices-oriented system based
on state-of-the-art cluster management technologies that emerged recently in
the distributed and high-performance computing ecosystem. It is designed, de-
veloped and maintained as a comprehensive solution and single entry point for
control of experiment data acquisition (up to 3.5 TB/s) and processing. This
communication describes the AliECS architecture by providing an in-depth
overview of the system’s components, interfaces, features, and design elements,
as well as its performance. It also reports on the experience with AliECS during
the first year of ALICE Run 3 data taking with LHC beam, including integration
and operational challenges, and lessons learned from real-world use.

1 Introduction

1.1 Overview of the O2 Computing System

The ALICE experiment [1] has undergone a major upgrade [2] deployed during the LHC’s
Long Shutdown 2 (2019-2021) in preparation for the LHC Run 3. The new and upgraded
detectors are operating at a significantly increased data rate, and in order for the data pro-
cessing to keep up, a new computing system called O2 [3] has been designed, developed and
deployed.

In its production instance, the O2 computing system consists of 100,000s processes, de-
ployed over roughly 570 heterogeneous nodes in two clusters, fulfilling roles including data
readout, processing, storage and auxiliary services. The system can read out 3.5 TB/s (28
Tb/s) of raw data and record 130 GB/s (1 Tb/s) of reconstructed data.

The O2 computing system is capable of two operation modes, depending on the data
flow structure: synchronous operation, intended to be synchronous with the detector read-
out, and asynchronous operation, which can take place at any time regardless of detector or
∗e-mail: teo.m@cern.ch
∗∗e-mail: vmcb@cern.ch
∗∗∗e-mail: piotr.jan.konopka@cern.ch
∗∗∗∗e-mail: george.raduta@cern.ch



beam conditions. Most nodes run hundreds of processes of different kinds, including long-
running services, asynchronous processing tasks, and data-driven process workflows. Since
synchronous workflows operate on data coming from detector data links, they must run in the
O2 facility at the LHC Point 2. Asynchronous workflows do not have this constraint, so they
can run at any time on WLCG (Worldwide LHC Computing Grid) nodes or on O2 facility
resources when they are not needed for synchronous operation.

1.2 The O2/FLP Computing Cluster

The O2 data processing workflows run on two typologies of computing nodes: FLPs (First
Level Processors) and EPNs (Event Processing Nodes). Each FLP is fitted with CRU (Com-
mon Readout Unit) [4][5] or C-RORC (Common Readout Receiver Card) [6] hardware, de-
pending on the detector. These PCI-Express cards are capable of two-way communication
with detector front-end electronics. Unlike FLPs, which host the first portion of the data
flow, EPNs do not have physical links to detector hardware, instead they are configured as
homogeneous computing nodes, operating as a second level of data processing after FLPs.

The O2 computing system is split into two separate computing clusters due to significant
differences in requirements between FLPs and EPNs. Both clusters are deployed at the LHC
Point 2.

Figure 1. O2/FLP and O2/EPN cluster control with respect to the ALICE Run Control Centre.

The existence of direct fibre links between FLPs and detector electronics makes FLPs
physically bound to a specific detector or detector component. Besides the variable number
of CRU or C-RORC cards (up to 3 per FLP), FLPs may have different system specifications.
Since FLPs are not interchangeable, the O2/FLP cluster is inevitably a heterogeneous envi-
ronment. EPNs, on the other hand, do not have direct links to detector front-end electronics,
and are largely interchangeable.

While the two computing clusters have their own specialised control mechanisms, for
synchronous operation the O2 system as a whole is controlled via a single user interface, the
AliECS GUI, operated by the ECS (Experiment Control System) shifter in the ALICE Run
Control Centre (see Fig. 1).

In addition to cluster control, the O2 project also includes a redesign of user interfaces in
favor of next-generation web-based GUIs with SSO (single sign-on) and a revamped look and
feel [7]. AliECS has command line and graphical user interfaces, including shifter-oriented
GUIs that supersede those of the previous generation ECS.

The O2 project is an opportunity to take advantage of modern developments in computing;
AliECS is built with the best practices of a microservices distributed application paradigm,
and harnessing the features of modern cluster resource management solutions.



2 Requirements of an ECS solution for ALICE Run 3
AliECS was designed and developed to improve operational flexibility and reliability com-
pared to the system used in LHC Run 2, as well as to take advantage of new technologies and
open source software that became available since the first design 15 years prior. The duties
of AliECS, in its role as the control mechanism for the ALICE O2 system, include

1. Managing the lifetime and configuration of thousands of data flow processes in the
O2/FLP cluster (while delegating control of O2/EPN processes to a specialized control
mechanism for the O2/EPN cluster),

2. While minimizing the waste of beam time by avoiding time-consuming process restart
operations whenever possible, and

3. Interfacing with the LHC, the trigger system, the DCS (Detector Control System) [8],
and other systems through common APIs.

3 AliECS design overview
Due to the tight coupling required between high-level experiment control and O2/FLP cluster
control, AliECS integrates both experiment control and O2/FLP cluster control functionality
into a single system. Thus, AliECS provides in-depth control of every data-driven process
running in the O2/FLP cluster. An interface between the AliECS core and the O2/EPN control
mechanism also implements coarse-grained, high-level control of the O2/EPN cluster.

AliECS is a distributed system in charge of the O2 facility with full knowledge and con-
trol over the resources of the O2/FLP cluster. It implements a distributed state machine to
represent the aggregated state of the constituent O2 processes of a data-driven workflow.
Furthermore, it allows the reconfiguration of running O2 data taking activities (called envi-
ronments) and their processes as often as possible to avoid process restarts, as well as the
simultaneous operation of multiple workflows. Finally, it reacts promptly to inputs, handling
events from the user, the LHC, the trigger system, the DCS, and the cluster itself with a high
degree of autonomy.

The O2 project has chosen FairMQ [9] as the common message passing and data transport
framework for its data-driven processes. It has been developed in the context of FairRoot [10,
11], a simulation, reconstruction and analysis framework for particle physics experiments.
FairMQ provides the basic building blocks to implement complex data processing workflows,
including a message queue, a configuration mechanism, a state machine, and a plugin system.

3.1 Resource Management in the O2/FLP Facility

AliECS is implemented as a distributed application, using Apache Mesos [12, 13] as a toolkit.
This custom solution integrates a task scheduler component, a purpose-built distributed state
machine system, a multi-source stateful process configuration mechanism, and a control plu-
gin and library compatible with any data-driven O2 process.

Apache Mesos is a cluster resource management system, which facilitates the manage-
ment of O2/FLP components, resources and tasks inside the O2/FLP facility, effectively en-
abling the developer to program against the datacenter (i.e., the O2/FLP facility at LHC Point
2) as if it was a single pool of resources. Mesos is an open source project hosted by the
Apache Software Foundation, and used in deployments of 10,000s nodes.

For AliECS, benefits of using Mesos include knowledge of what runs where, resource
management (including port assignment), transport facilities for O2-specific control mes-
sages, task status tracking (e.g. an event is raised if a task dies unexpectedly), as well as
advanced features such as node attributes, cgroups-based resource isolation, containerization,
resource overprovisioning, checkpointing, and others.



Figure 2. The role of AliECS in the ALICE O2 system.

3.2 AliECS Components

AliECS has been used at LHC Point 2 in production since 2022, and is under ongoing main-
tenance and development as our solution for the problem of O2/FLP synchronous control and
ECS. The current implementation of AliECS can be found on GitHub [14]. AliECS consists
of the

1. AliECS core (which includes workflow processing, task deployment and control via
the Apache Mesos-facing scheduler component, and integration with other systems),

2. Apricot service (the single point of truth for ALICE O2/FLP configuration, including
AliECS configuration, hardware inventory, and task configuration templates and pay-
loads),

3. AliECS executor (one per cluster node, manages the life cycle and controls the state
machine of data flow tasks),

4. AliECS GUI (a web-based graphical user interface[7], used by the ALICE RunControl
Center shift crew and experts to interact with AliECS),

5. O2 Control and Configuration (OCC) library and plugin (loadable components that
allow AliECS to interface with controllable tasks and drive their state machine),

6. AliECS control and configuration command line utility (coconut),
7. AliECS process execution and control utility for OCC library based O2 processes

(peanut).
Most components of AliECS are written in Go [15], a statically typed general-purpose

programming language in the tradition of C, which is particularly suitable for distributed
system development because of its advanced synchronization and threading facilities. In
order to seamlessly interface with O² data flow tasks, AliECS includes a C++ library as well
as a FairMQ plugin for task configuration and state machine control. The common idiom of
inter-process communication in AliECS is gRPC [16], an open source, cross-language RPC
(Remote Procedure Call) system widely used in the microservices community.

AliECS interfaces with Consul [17], a key-value store that acts as the system’s configura-
tion repository. The design also includes interfacing with information sources from the LHC,



the trigger system and the DCS. Once acquired by the AliECS core, configuration informa-
tion is processed into an in-memory hierarchical key-value store, and fed into a template
system in order to generate task deployment and configuration structures.

AliECS also interfaces with the O2 Monitoring system, as well as with the O2 Bookkeep-
ing system, in order to persist data-taking activity information.

As shown in Fig. 2, AliECS oversees the full data-taking pipeline, starting from ALICE
detector electronics, passing through Common Readout Units (CRUs) on FLP machines and
subsequent data flow tasks, the EPN cluster and its additional processing workflows, until the
processed and compressed data is finally written to storage.

3.3 AliECS Concepts

The basic unit of scheduling in AliECS is a task. A task generally corresponds to a process,
more specifically, a process that can receive and respond to OCC-compatible control mes-
sages. All AliECS workflows are collections of tasks, which together form a coherent data
processing chain.

Tasks are the leaves in a tree of roles. A role is a runtime subdivision of the complete
system and represents a kind of operation along with its resources. Roles allow binding tasks
or groups of tasks to specific host attributes, detectors and configuration values. In memory, a
tree of O2 roles, with tasks and their configuration is a workflow. A workflow aggregates the
collective state of its constituent O2 roles. A running workflow, along with associated detec-
tors and other hardware and software resources required for experiment operation constitutes
an environment, which is the highest level of state machine control (see Fig. 3).

Figure 3. The state machine of an AliECS environment. The same state machine is implemented by
each task. For FairMQ-based tasks the OCC plugin acts as a translation layer between the AliECS task
state machine and the underlying FairMQ state machine.

3.4 Configuration Management

AliECS is both a producer and consumer of configuration data in the O2/FLP cluster. There
are three kinds of configuration information that AliECS deals with:

1. the AliECS core configuration,
2. the AliECS workflow configuration,
3. and the O2 tasks configuration.

The AliECS core configuration is a flat list of read-only values that the AliECS core
acquires on startup. Typical values that come from this configuration mechanism are the
control port to use for incoming AliECS GUI or coconut connections and the URI of the
Mesos master API.

The AliECS workflow configuration is acquired by a configuration manager component
that uses Git repositories as a backend for file storage and versioning. The AliECS workflow
configuration data consist of task descriptor files and workflow template files sourced from



Git repositories. A task descriptor file is a YAML document that describes how to launch
and control a single task, such as an O2 data-driven process. A workflow template file is a
YAML document that describes the structure of a workflow of roles and (ultimately) tasks.
This structure directly expresses the control tree, which defines the layout of the distributed
state machine.

Workflow configuration is further complemented by AliECS runtime variables, sourced
from persistent storage via Apricot, or from user input via the AliECS GUI, which can affect
the loaded workflow and single tasks (Fig. 4).

Figure 4. The AliECS core acquires workflow and task configuration information from multiple
sources, and processes this information into a deployed AliECS environment.

AliECS implements task configuration as a push operation associated with the
CONFIGURE transition. The payload of this operation is task-specific and includes communi-
cation channel configuration (i.e. hosts and ports to connect or bind) as well as an optional
key-value map of application-specific configuration data. Channel configuration is gener-
ated on the fly by the AliECS core, whereas application-specific configuration data is stored,
composed and processed by Apricot.

All these different sources of configuration provide inputs for the end goal of a working
in-memory representation of a data-driven process workflow, and ultimately result in the same
workflow deployed throughout the O2/FLP and O2/EPN clusters.

4 AliECS in Run 3 production

The O²/FLP and O²/EPN clusters at LHC Point 2 host two instances of the O² data-taking
system: the production instance and the staging instance. The latter is a scaled-down ver-
tical slice of the full system, for testing and release validation purposes. Consequently, the
O²/FLP cluster hosts two instances of AliECS. Additional smaller-scale instances have been
provisioned as needed for other objectives, such as detector commissioning.

During the first year of operation, as well as during research and development before that,
we encountered the following major challenges:

1. Operating the O2 system, including AliECS for the ECS shifter in the ALICE Run
Control Centre, requires all-new training compared to Run 2. This was especially true
during an initial period when operational experience with the new system at production
scale was scarce. We have addressed this challenge with refreshed training materials
and procedures and incremental improvements in the AliECS GUI in order to hide
some complexity and streamline the shifter’s choices.

2. The central position of AliECS with respect to other O2 components results in a fre-
quent need to change both the behavior of the system and its presentation (i.e. the



AliECS core and the AliECS GUI). AliECS is highly flexible, and its workflow tem-
plate system ensures that the data flow can be modified without code changes in AliECS
components, but the inputs to workflow template processing still need to come from
the AliECS GUI. In order to provide the necessary flexibility and consistency, the GUI
implements a dynamic input widget system, in which the AliECS core requests from
the GUI a widget layout specific to the workflow template in use. This way, the envi-
ronment creation page in the GUI is described entirely in the YAML-based workflow
template file in a declarative way.

3. The IPC interfaces between AliECS and other ALICE systems such as the DCS, the
trigger systems, and the O2/EPN subcontrol are still evolving as the relevant teams
improve and complete core functionality. AliECS has had to interact with these sys-
tems, called integrated services on the AliECS side, since day one of production. We
have addressed this challenge by reacting promptly to integration needs, as well as by
structuring this pattern of IPC into a plugin system that allows us to quickly and easily
enable, disable, and change the timing of integrated service API calls on the fly within
the YAML-based workflow template files.

4. The development and support responsibilities of the different components that AliECS
interfaces with are handled by different teams, and the components themselves are
deployed on separate hardware, sometimes even separate networks, which presents
challenges to system integration. While the final round of integration testing is still
performed manually on the staging instance of the O² system, we have put in place an
automated integration pipeline that deploys and operates as much as possible of the
system on a single node.

5. The deployment and teardown procedures of a data-taking environment are inevitably
complex due to the inherent complexity of the system. These procedures require a
carefully choreographed sequence of API calls and state transitions involving multiple
systems and thousands of processes. On the one hand, some of the steps in these se-
quences have dependencies on one another that can’t be missed; on the other hand, if all
the steps are made strictly sequentially, the operation in question takes longer, leading
to a waste of beam time. We have addressed this challenge by implementing a mecha-
nism based on transition substeps and indexes in the AliECS core and finely tuning the
configuration of environment deployment and teardown procedures to parallelize what
we can.

6. Dozens of different kinds of data flow tasks are composed into highly complex work-
flows, and some of these tasks may, at times, misbehave, such as failing to comply
with a transition request or allocating too much memory. We have addressed these
kinds of challenges in various ways, such as defensive coding, continuous integration,
and cgroups-based task isolation.

Thanks to the above, AliECS, as well as the O2 system as a whole, are ready for the heavy
ion beams in 2023 and well positioned for high-efficiency data taking in 2024 and beyond.
By the beginning of 2023 AliECS with the O2 computing system enabled ALICE to reach
over 90% running efficiency in production.

5 Conclusion
AliECS is a new microservices-oriented and integrated solution for ALICE experiment con-
trol; it was designed, developed and deployed as part of the O2 computing system in the
O2/FLP facility at LHC Point 2. AliECS is part of a broad technical refresh for ALICE, lever-
aging modern cluster resource management and IPC technologies for a high-performance,
low-latency ECS.



By employing Apache Mesos as a platform for AliECS, we provide cluster resource man-
agement, task isolation, control message transport, events, and more to achieve improved
operational flexibility. On top of this framework, we implement a distributed state machine
mechanism, with an expressive configuration format, highly flexible system integration fa-
cilities, and a modular process control stack for maximum compatibility in an inevitably
heterogeneous context. Open source cross-platform and cross-language technologies such
as gRPC, Git and Consul are employed to maximize interoperability and minimize technical
risks.

AliECS empowers the ALICE collaboration to maximize usage of LHC beam time
while ensuring optimal resource allocation in the new O2 facility for data-driven workflows.
AliECS takes direct control of the O2/FLP facility and interfaces with the O2/EPN cluster
control to gain high-level oversight of the whole data readout chain. Our design approach has
achieved substantial performance improvements and operational benefits in mission-critical
use cases compared to the old system.

References

[1] K. Aamodt et al. (ALICE), JINST 3.08, S08002 (2008)
[2] B. Abelev et al. (ALICE), Journal of Physics G: Nuclear and Particle Physics 41, 087001

(2014)
[3] J. Adam et al. (ALICE), Tech. Rep. CERN-LHCC-2015-006 /ALICE-TDR-019, CERN

(2015)
[4] J. Mitra, S. Khan, S. Mukherjee, R. Paul, Journal of Instrumentation 11, C03021 (2016)
[5] O. Bourrion, J. Bouvier, F. Costa, E. Dávid, J. Imrek, T. Nguyen, S. Mukherjee, Journal

of Instrumentation 16, P05019 (2021)
[6] A. Borga, F. Costa, G. Crone, H. Engel, D. Eschweiler, D. Francis, B. Green, M. Joos,

U. Kebschull, T. Kiss et al., Journal of Instrumentation 10, C02022 (2015)
[7] G.C. Raduta, Journal of Physics: Conference Series 2438, 012041 (2023)
[8] P. Chochula et al., Proceedings of the 16th International Conference on Accelerator and

Large Experimental Control Systems pp. 323–327 (2018)
[9] FairMQ C++ Message Queuing Library and Framework, https://github.com/

FairRootGroup/FairMQ, accessed: 2023-08-30
[10] M. Al-Turany, D. Bertini, R. Karabowicz, D. Kresan, P. Malzacher, T. Stockmanns,

F. Uhlig, Journal of Physics: Conference Series 396, 022001 (2012)
[11] M. Al-Turany, P. Buncic, P. Hristov, T. Kollegger, C. Kouzinopoulos, A. Lebedev,

V. Lindenstruth, A. Manafov, M. Richter, A. Rybalchenko et al., Journal of Physics:
Conference Series 664, 072001 (2015)

[12] Apache Mesos, http://mesos.apache.org/, accessed: 2023-08-30
[13] D. Berzano, G. Eulisse, C. Grigoraş, K. Napoli, Journal of Physics: Conference Series

898, 082043 (2017)
[14] The O2 Control System, https://github.com/AliceO2Group/Control, accessed: 2023-08-

30
[15] The Go Programming Language, https://golang.org/, accessed: 2023-08-30
[16] gRPC A high performance, open-source universal RPC framework, https://grpc.io/, ac-

cessed: 2023-08-30
[17] Consul by HashiCorp, https://www.consul.io/, accessed: 2023-08-30


