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Abstract. The ATLAS experiment’s data acquisition (DAQ) system will be
extensively updated to take full advantage of the High-Luminosity LHC (HL-
LHC) upgrade, allowing it to record data at unprecedented rates. The detector
will be read out at 1 MHz, generating over 5 TB/s of data. This design poses
significant challenges for the Ethernet-based network, which will have to trans-
port 20 times more data than during Run 3. The increased data rate, data sizes
and number of servers will exacerbate the TCP Incast effect observed in the past,
making it impossible to fully exploit the capabilities of the network and limiting
the performance of the processing farm. We present exhaustive and systematic
experiments to define buffering requirements in network equipment to minimise
the effects of TCP Incast and reduce the impact on processing applications. Both
deep and shallow buffer switches were stress-tested using DAQ traffic patterns
in a test environment at approximately 10% of the expected HL-LHC DAQ
system size. As the desired HL-LHC system hardware is not currently avail-
able and the laboratory size is significantly smaller, the tests aim to extrapolate
buffer requirements to the expected operating point. A novel analytical formula
and new simulation models have been developed to cross-validate the results.
The results of these evaluations will contribute to the decision-making process
for the acquisitions of network hardware for the HL-LHC DAQ.

1 Introduction

In the coming years (expected 2026 to 2028), the ATLAS experiment [1] at CERN will un-
dergo a significant upgrade to adapt to the new conditions provided by the High-Luminosity
Large Hadron Collider (HL-LHC) [2]. The new HL-LHC will generate as many as 200
proton-proton collisions per bunch-crossing and, to fully exploit its physics potential, trig-
ger rates must be increased by a factor of 10 compared to previous runs. To accommodate
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these higher rates, upgrades to both the detectors and the Trigger and Data Acquisition sys-
tem (TDAQ) will be required [3]. The TDAQ system is tasked with collecting data from the
detectors, selecting the interesting fraction and recording the selected data. The HL-LHC
TDAQ system is expected to read out detectors at 1 MHz, resulting in a total throughput of
approximately 40 Tbps out of which only about 1% will be selected for recording.

The Data Acquisition (DAQ) network has to support 20 times more data compared to
previous runs which becomes additionally challenging given the latest trends in the network
hardware industry. In the last few generations of network devices, memory scaling has not
kept pace with the scaling of the link speeds, making it challenging to increase packet buffers
linearly with the port density and throughput of the routers [4, 5]. Due to the inherently bursty
and synchronous nature of DAQ traffic, network buffers play a critical role.

Figure 1 shows the HL-LHC TDAQ architecture. Compared to previous systems, all data
will be transported from the Readout (RO) to the Event Filter (EF) posing additional chal-
lenges for the DAQ network connecting them. Moreover, all data related to a single bunch-
crossing is processed by a single EF server, generating an instantaneous burst of data from the
multiple RO sources down to a single EF server. These conditions generate increased usage
of intermediate network buffers which, if saturated, worsen the TCP Incast effect already ob-
served in the past [6, 7] making it impossible to fully exploit the capabilities of the network,
limiting the performance of the EF processing farm.

Ensuring seamless transfer of detector data to the EF requires a carefully designed net-
work with enough buffer space to accommodate the future TDAQ data traffic, as packet drops
can significantly impact the overall system performance. Over-provisioning network buffers
can result in unnecessarily increased costs. However, estimating buffering requirements has
always posed challenges, prompting extensive research to characterise various workflows and
technologies [8]. The final system will not be available until a later stage, while the network
needs to be set up in advance. Additionally, final hardware may not be available for testing as
we are years ahead of the system installation. While an early-stage small-scale lab prototype
can be evaluated, the challenge lies in conducting measurements at a reduced scale and using
different hardware, which can hinder the accuracy of evaluations.

This paper proposes a threefold strategy to estimate network buffer requirements and the
associated data acquisition event-building performance:
• Systematic experiments: a series of exhaustive systematic experiments are conducted

to measure buffer utilisation in a controlled test environment, representing approximately
10% of the expected size of the HL-LHC DAQ system.
• Analytical model: a simple analytical model is developed specifically for the DAQ traf-

fic patterns. This analytical model captures the overall system behaviour, providing the
grounds for fitting and numerical extrapolation of lab measurements.
• Simulation model: a discrete-event model, which was widely used during previous AT-

LAS runs [9], is extended and validated against lab measurements. This simulation model
is exercised to asses the performance and buffering requirements for the number of Readout
nodes expected for the final HL-LHC system.

Together, these three complementary strategies allow for cross-validation and provide a rea-
sonable level of confidence in the performance predictions. Moreover, these predictions will
guide the definition of specific network devices that will be deployed in production for the
future DAQ HL-LHC system.

The rest of the paper is organised as follows. In Section 2 other related research is dis-
cussed together with an introduction to the simulation framework used. In Section 3 the main
tools and methodology used to gather results are described. In Section 4 measurements and
results are discussed. Finally, Section 5 presents future works and concludes the paper.
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Figure 1. TDAQ components and ar-
chitecture for the ATLAS HL-LHC. The
Readout system (green) forwards trigger
signals from the Trigger (purple) to de-
tectors’ electronics (blue) and forwards
readout data to the Dataflow system (yel-
low). The data are provided to the Event
Filter (red) upon request for analysis. Se-
lected data are aggregated and eventually
sent to permanent storage.

2 Related work

Packet buffers in network devices have been the subject of extensive research since the early
days of the Internet. Despite this extensive body of work, which includes well-grounded
theory [8], extensive simulations [10] and empirical experimentation, the optimal sizing of
packet buffers remains a difficult discipline, where each real system deserves its own crafted
sizing technique. Packet buffers significantly contribute to the uncertainty of network traffic:
they cause queuing delays and jitter, packet losses (when overfilled), and they can degrade
throughput. Operators typically follow the Bandwidth-Delay-Product rule-of-thumb [11] to
provision buffers, an empirical rule conceived in the 90s for few long-lived TCP connections.
This is the opposite scenario for the DAQ system, which supports thousands of micro-burst
TCP flows over a high-speed network. Mathematical models span from dynamic differential
equations to graph-theory, stochastic processes and probability theory [8]. Specific models
have been derived for TCP incast problems in data centres [12], but are often tailored to spe-
cific workloads. They lack key parameters for DAQ-like systems, and estimating appropriate
values for other parameters can be very challenging.

Previous data taking sessions in the ATLAS experiment have encountered similar chal-
lenges. Solutions to the TCP incast effect that are used in data centres were evaluated in
the DAQ context [13] showing improved performance but requiring kernel recompilation or
modifying network hardware. A server-based software switch with nearly limitless buffer to
provide lossless operation showed good performance [7], but the port density and fault tol-
erance rendered this design inappropriate. A software-based traffic shaping solution showed
to control buffer overflows when using small buffer switches but at the expense of increased
latency and constrained maximum performance [6]. The traffic shaping algorithm imple-
mented in the study focused on controlling dedicated per-port buffers. However, modern
switches typically offer shared buffers across all ports, which diminishes the effectiveness
of the algorithm. In a recent performance study conducted within the context of the LHCb
experiment and utilising Ethernet RocEv2 (instead of TCP as in this study), a comparison be-
tween deep and shallow buffer switches was performed. The study revealed that the shallow
buffer switch exhibited sub-optimal performance, while the deep-buffer switch demonstrated
satisfactory performance but only when dealing with a limited number of data sources [14].

The simulation model for the TDAQ system relies on the Discrete-Event System Speci-
fication (DEVS) [15], the most general mathematical formalism for modelling discrete-event
systems. DEVS is capable of representing discrete event, discrete time and continuous dy-
namics combined in a mathematically sound way. A model in DEVS is described as a hier-
archical composition of behavioural (atomic) models and structural (coupled) models. This
fact makes DEVS a natural choice to map the hierarchical system in Figure 1, where coupled
and atomic models represent network components.



The PowerDEVS [16] simulation toolkit was chosen as it proved suitable to model
data networks either from a microscopic (packet-to-packet) and macroscopic (fluid-flow) ap-
proaches [17, 18]. PowerDEVS allows defining model structure on a Graphical User Interface
(GUI) suitable for non-experts, or using Python scripting to build large complex models [19].
Advanced users can build DEVS atomic behavioural models using C++.

The TDAQ model for the HL-LHC system is an extension to models extensively used
during the previous ATLAS runs [9], which includes low-level model libraries (e.g. delays,
priority queues, routing tables and egress ports), high-level model libraries (e.g. TCP/UDP
senders/receivers, switches and routers implementing different congestion control mecha-
nisms), as well as TDAQ application models. Most of the high-level components were vali-
dated against their real counterparts.

3 Methodology and Tools

The ATLAS TDAQ system exhibits a bursty and synchronised traffic pattern that places sig-
nificant demands on network device buffers [6]. Data generated at the ATLAS detector un-
dergo temporary buffering in the RO system. At the HL-LHC, data associated with each
bunch-crossing (called event and estimated to be 5 MB) will be buffered in approximately
600 RO servers. Subsequently, a single EF node sends a request to all RO servers to collect
the information associated with a specific event to process it and decide whether to discard
or transfer it to permanent storage. Responses from all RO servers are tightly synchronised
in time since they stem from the same request. Moreover, the RO and core networks exhibit
significantly higher link speeds compared to the access links of the EF nodes (see Figure 2).
Consequently, this leads to instantaneous data aggregation at network devices which need to
buffer fast incoming data from multiple nodes into a single slower link.

As this effect multiplies with the rate at which Events are requested, increased processing
rates require increased buffers in network devices. The detrimental effects of buffer over-
flow on performance are significant, as it leads to packet drops and subsequent TCP re-
transmissions. Although no data loss occurs, this process causes substantial performance
degradation, preventing full utilization of the network link capacity. Consequently, this per-
formance degradation has a direct impact on the event processing rate, ultimately diminishing
the overall efficiency of the experiment. Therefore, accurate estimates of buffer utilisation are
essential for making informed decisions regarding buffer provisioning in the network infras-
tructure and guiding future hardware acquisitions. This section describes three methods and
tools employed to estimate buffer usage in network devices for the HL-LHC.

3.1 Lab test environment

Figure 2 shows the network and hardware configuration of the experiments’ test environ-
ment. The lab comprises 48 RO nodes, and 2 racks with 32 EF servers. The devices under
test (DUT), are the top-of-rack (ToR) switches that aggregate the EF nodes. Only one of
the EF racks was used in each experiment to measure the performance of either the Juniper
QFX5120-48Y ToR (QFX) [20] or Juniper ACX7100-48L ToR (ACX) [21]. Both switches
have an aggregated uplink capacity of 800 Gbps to the core routers, and an access link ca-
pacity of 25 Gbps to each of the 32 EF nodes. In comparison, the network for the HL-LHC
system is anticipated to have a similar topology, the same link capacities, central core routers
will possess sufficient capacity to accommodate the expected traffic, approximately 600 RO
nodes (lab represents 8%), and thousands of EF servers hosted in up to 100 racks. For these
experiments the EF racks are considered to be largely independent, so conducting experi-
ments with a single rack can provide reasonable estimates of the buffer usage.



The QFX switch utilises a shallow buffer architecture which includes 5 MB of dedicated
packet buffer distributed across all ports, and additional 27 MB which can be configured as
shared or dedicated buffer. Shared buffers are used by traffic traversing all ports and dynam-
ically allocated based on the traffic demands across different ports. Dedicated buffers are
assigned and owned by individual ports, providing isolation and ensuring that each port has
its own buffer resources. The ACX deep buffer switch has 8 GB of High Bandwidth Memory
packet buffer and uses a virtual output queue architecture which maintains separate buffers
for each ingress/egress port combination. Since the ACX costs approximately 2.5 times as
much as the QFX, there is a strong preference to deploy shallow buffer switches in the final
system. For the purposes of this study, the ACX deep buffer switch serves as a reference
device, representing the desired behaviour of the system under the best-case scenario.

Regarding the software, existing DAQ applications and emulators were adapted to match
the expected HL-LHC system data-flow patterns. For the EF, applications distribute the load
amongst all EF nodes and generate the requests to the RO servers. These applications were
configured to perform full-event building: upon receiving an event identifier, EF applications
initiate requests to all RO servers to gather all the associated data of the Event. It is the re-
sponses to these requests that generate micro bursts and lead to buffer saturation of the ToR
switches, which are the specific phenomena we are interested in studying. Emulators were
used in place of the EF applications responsible for analysing, processing, and making deci-
sions regarding the permanent storage of detector’s data. To stress the network, these emula-
tors were configured to process up to 32 events concurrently per server and with processing
times that guaranteed processing power not to be a bottleneck in any test. All events are
immediately discarded after processing to asses only event collection rates. Event identifiers
are also emulated with a configurable rate set differently in each test. For the RO, emulators
were used to generate data upon receiving requests from the EF nodes. The data aggregated
from all RO servers determines the event size, which follow a stochastic distribution with a
configurable mean set differently on each test. This configuration produces synthetic event
sizes, which may not perfectly mirror those of actual data-taking sessions. Instead, the focus
is on generating consistent data patterns with predictable and easily configurable event sizes.
Communication between applications use the TCP/IP protocol and an asynchronous custom
library based on Boost Asio.
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Figure 2. Topology of
the Data Acquisition sys-
tem prototype built in the
lab. Provides access rates
as expected for the HL-
LHC system, except for
the Readout servers that
will be connected with
2x 100GbE. Only one
of the devices under test
(QFX and ACX) is exper-
imented at a time.



3.2 Experiment methodology and automated tools

The objective is to determine the minimum shared buffer size required on the ToR switches
for the system to operate with minimal packet drops. However, the internal metrics provided
by the network devices themselves are not sufficiently accurate or fine-grained to capture the
occurrence of micro bursts and short spikes, which are prevalent in this particular system.
Hence, the experiments aim to estimate the minimum required buffer by setting the system
conditions, sensing packet drops, and iteratively adjusting the available buffer in the ToR
switch. The goal is to identify the buffer capacity at which no packet drops are observed.

Moreover, the buffers in the QFX switch are insufficient to operate at the target condi-
tions so it is impossible to obtain the required buffer directly from the measurements. Conse-
quently, experiments systematically vary the system conditions to observe the trend in which
the minimum required buffer size at the ToR switches increases under different conditions.
By sweeping the system and analysing the resulting data, the relationship between system
conditions and the corresponding required buffer size can be extrapolated.

New automated tools were developed to perform long-running experiments, sweeping a
big range of system conditions. These tools aided in carefully setting conditions on hardware
and distributed applications, obtaining measurements from multiple sources, and running the
system for sufficient time to reach equilibrium before taking measurements. Moreover, auto-
mated tools allowed for reproducible results, unattended execution to maximise the utilisation
of the lab resources, flexible configuration of network devices and DAQ application parame-
ters. They also allow different types of sweeps combining multiple parameters. Relevant to
these experiments are binary searches, which enable efficient search of the minimum required
buffer size with minimal iterations. Multiple executions of the same condition are performed
to assess measurement errors. Automated tools are written in Python and were designed to
be used beyond the scope of the experiments on this paper. The tools interact with ATLAS
online systems, monitoring infrastructure and hardware devices. ATLAS control systems can
set and access the initial system configuration, dynamically set parameters across multiple
distributed applications, and provide metrics on running applications. Network monitoring
time-series databases provide live metrics such as packet drops.

3.3 Analytical model

An analytical model of the EF ToR switch buffer occupancy profile was developed. This
turned out to be very useful to exclude upfront potential candidate platforms due to insuffi-
cient buffer space, and to gain confidence about the suitability of the mathematical surface
used for data extrapolation (see Section 4).

The regularity of the system parameters at a macroscopic level (i.e. event rates and event
sizes) allow some degree of predictability on how much data are injected into the system,
at which speed the buffer is filled (i.e. input speed at maximum) and at which speed it is
emptied (i.e. output speed for a given event). With this in mind, the simplified model was
built under the strong assumption that for a given event all the RO servers would reply with
the corresponding data fragments almost simultaneously, resulting in a micro-burst that loads
the ToR switch buffer at the speed of the switch input link. This simplification of the system
is acceptable as long as the time skews of the different processes involved are below the time
it takes to load the buffer. The model also ignores the impact of the TCP congestion control
window, the number of EF nodes in the rack, queuing delays, stochastic processes, and as-
sumes infinite capacity on the upstream network. These are, however, realistic assumptions
due to 1) the modest amount of data that each Readout server sends and 2) the significant
amount of network bandwidth installed on the core network layer.



The buffer occupancy then is modelled for each event with a triangular function: buffer
occupancy increases at the speed of the input link during each event arrival; and decreases at
the speed of the output link. The event rate determines the start time of these functions and
their sum yields the shared buffer occupancy. The maximum is given by:

BN (t) |max = N
[

(I − O)
I

S −
N − 1

2
×

O
f

]
with N =

⌊
S × f

O

⌋
+ 1

where: S ≡ Event size plus protocol headers and network overheads; f ≡ Event frequency
that needs to be absorbed by a given Event Filter ToR switch; O ≡ Output bandwidth (speed
at which a given event is flushed from the buffer); I ≡ Input bandwidth (speed at which a
given event arrives to the buffer). The formula is valid in general if I > (N − 1)O (i.e. the
system does not push more data than the input link bandwidth). For additional details on how
the formula is derived and its mathematical constraints refer to [22].

3.4 Simulation model

The simulation model for the HL-LHC TDAQ system (available at [23]) is an extension of
the model in [9] to include new applications, network devices and the expected topology.

The model includes representations for the EF and RO applications which buffer, trans-
port and process data (as described before). The EF’s data analysis processes are modelled as
a sequence of stochastic delays. RO response times and event rate are modelled with stochas-
tic distributions whose parameters are determined experimentally. The simulation network
topology mimics that of Figure 2. The simulation model represents network traffic at the
packet level, including protocols, network transfer delays, and OSI layers 3 and above.

New simulation models for the network devices were added to incorporate the shared-
buffer scheme. Additional details specific to the QFX device were added based on insights
gained through experimentation. For example, the buffer in the QFX device is divided into
cells of fixed size, which reduces the effective usable space, and there are limitations on the
amount of buffer that a single port can utilise. These are crucial details that were taken into
account to increase the simulation model accuracy in representing the operational character-
istics of the QFX device. Not included in the simulation model are explicit representations
of real data (which is reflected only by packet sizes), EF algorithms that analyse data (repre-
sented by their stochastic processing times), CPU and memory utilisation in the servers, and
physical network links characteristics (represented only by their delays).

One key strength of the simulation model is its flexibility to represent multiple scenar-
ios and capture fine-grain details across network and application metrics (for example, in
the transition from the lab configuration to the final HL-LHC system). In contrast to the
analytical model, the simulation model can capture internal and emergent behaviours for all
connected elements in the system. For instance, the model has been used to study load bal-
ancing mechanisms [17] and traffic shaping algorithms [9].

To determine the minimum buffer to prevent packet drops, the lab tests are replicated in
the simulation. Simulated ToR switches are configured with an infinite buffer capacity and
their maximum utilisation is measured.

4 Results

This section shows the results for the lab measurements, the analytical formula and different
simulation runs. We adopt a target operational requirement of a 5 MB event size and 1 MHZ
event collection rate for the HL-LHC system. Considering an estimate of 83 EF racks in the



final system, we assume a 12 kHz event collection rate is required for each EF ToR switch,
as these switches operate independently.

Figure 3 shows the maximum achievable performance, without packet drops, as a func-
tion of the event size for the two different DUT switches. In the case of the QFX switch, the
automated tools employ a binary search on the event generation rate to determine the max-
imum rate at which no significant packet drops occur. Conversely, for the ACX switch, no
rate limitation is necessary as the deep buffer capacity ensures that no overflow occurs. The
performance bottleneck for the ACX switch is primarily associated with the application and
server performance rather than the network itself. The ACX switch is utilised as a baseline
for comparison and to demonstrate the feasibility of the system.

The plot shows the extent of the performance degradation due to the reduced buffer ca-
pacity of the QFX switch. At the target event size of 5 MB, the system is able to collect events
at 14.2 kHz with the deep buffer, surpassing the required 12 kHz target rate. In contrast, with
the QFX shallow buffer switch the event collection rate drops to a mere 1.8 kHz. Such a
decreased rate renders this configuration unfeasible for meeting the system’s requirements.
These results highlight the critical importance of an adequate buffer capacity, as the choice of
switches significantly impacts the system’s ability to achieve the desired data collection rates.
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The estimated minimum required buffer sizes to avoid packet drops on the QFX switch
are shown in Figures 4 and 5 as a function of the event size and event rate respectively.
Experiments cover event rates in the range [1-20] kHz and event sizes in the range [1-8] MB,
but fewer cases are included in the plot for simplicity. Regarding lab measurements, the plots
show that the system can not cope with high event rates or event sizes due to lack of buffer.
The target rate of 12 kHz can only be achieved with events smaller than 2.5 MB. Also, the
required buffer as a function of the event size fits well to a second order polynomial, and a
linear function for the case of the event rate.

The results obtained with the detailed simulation model (based on microscopic first prin-
ciples) align very well with the simplified analytical model (based on completely different
macroscopic assumptions). However, both results differ from the laboratory measurements
by an empirically identified linear factor k ≈ 1.5. Yet, said factor is remarkably consistent and
robust across all studied setups. We suggest that this linear correction can be considered as a
parameter consistently absorbing all unknown and unmodelled behaviours of the equipment
(possibly also capturing sources of systematic measurement bias in the switches’ reporting
system). We consider that this finding does not undermine the strength of the conclusions,
which remain valuable and consistent to inform equipment upgrade decisions (at least within
the ranges of values considered in this study).
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Figure 4. Minimum shared buffer size required to avoid packet drops on the QFX switch. Several
options are presented for combinations of event size (x axis) and event collection rate (panels). Three
different methods are applied (lab tests, simulation and analytical). Error bars depict standard devia-
tions. Results of the simulation and analytical models are corrected by an empirically identified scaling
factor k = 1.5 that proves consistent across all scenarios.

Finally, Figure 6 shows the estimated minimum required buffer to avoid packet drops on
the QFX switch across the entire range of event sizes and event rates. Figures 5 and 4 are
vertical slices of this plot. Regarding the lab measurements, the automated tools evaluated
more than 300 data points, some not included in the plot as they always produced drops. With
each data point requiring approximately 5 minutes and repeating 8 times, the full measure-
ments took more than 8 days. Regarding the simulation, the plot includes 320 data points.
The model was run for 5 simulation (virtual) seconds, as a stationary state is reached in ap-
proximately 1 second. The execution time of the simulation depends mainly on the traffic
that traverses the network (a function of Event Size x Event Rate) and ranges from a couple
of minutes up to 18 hours in the worst case. Single-threaded simulations were launched in
batches and distributed across multiple nodes to execute concurrently.

The plot includes a statistical fit of the lab measurements, and the predictions of the
analytical and simulation models, for system conditions that cannot be assessed in the lab.
The fit is obtained minimising the least squares error of the measurements corresponding to
the two dimensional input data grid (event sizes and event rates). The shape of the surface
chosen for the fit is compatible with the analytical model, being a first order polynomial
for a given event size and a second order one for a given event rate. The coefficient of
determination obtained for the fit is significant (R2 = 0.99) so the resulting surface could be
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used to extrapolate to the target requirements and estimate the buffer needs to 71 ± 1 MB.
The result is meaningful assuming the system scales without hitting other limitations first, in
which case the buffer needs would be lower due to the traffic synchronicity would be lost.
This value poses an optimistic lower bound for the predicted buffer size.

As described in Section 3.4, the simulation captures network and topology details, thus
it is flexible in representing scenarios which can not be executed in the lab, nor captured by
the analytical formula. Contrary to the previous figures, Figure 6 shows that for bigger event
sizes and rates, the simulation model predicts a higher buffer utilisation than the analytical
model. When the bandwidth utilisation (approximately EventS ize × EventRate) approaches
its limit of 800 Gbps, the simulation model shows a rapid increase in buffer requirements
due to network link saturation. This effect, which is expected in the real system, cannot be
captured by the analytical formula or the statistical fit extrapolation. According to the model,
the buffer size required for event rate and size of 12 kHz and 5 MB is 109 ± 4 MB This
represents a conservative upper bound for the predicted buffer size. Ultimately, these bounds
narrow down the design space to help engineers to take informed decisions.

Additionally, the simulation model was configured with the final number of 600 Readout
nodes, providing a more realistic representation of the HL-LHC system compared to the 48
nodes available in the lab. Although the micro-burst sizes remain the same (as the event size
is unchanged), the responses from the Readout nodes arrive more concurrently at the ToR,
requiring additional buffering capacity (115 ± 3 MB).

5 Conclusions and Future Work

With the goal of characterising network device requirements for the HL-LHC system, this
paper presents a comprehensive analysis of three distinct methodologies for benchmarking
ToR switches in terms of their maximum achievable event building rate based on the buffer
capacity offered. Through automated experimentation in a scaled-down laboratory it was
found that a shallow buffer switch with a 32 MB buffer could not achieve the desired operating
point. In contrast, a deep buffer switch with an 8 GB buffer achieved the desired performance,
but at a higher cost, approximately 2.5 times that of the shallow buffer switch.
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An analytical formula and a discrete-event simulation model were developed to obtain
design values at system scales not achievable with the laboratory hardware. The analyti-
cal formula was specifically developed for the ATLAS DAQ case. The simulation model
extended a previously developed packet-level model for the ATLAS DAQ taking into con-
sideration application algorithms, topology, network protocols, and queuing effects. New
automated tools were used to measure the minimum buffer requirements under increasingly
demanding conditions. Observing the trends in buffer needs confirmed the formula and sim-
ulation predictions, concluding that buffer requirements increase linearly with respect to the
Event Rate and quadratically with respect to the Event Size.

Finally, to estimate buffer requirements for the expected working point of the HL-LHC,
the formula and simulation were exercised on these conditions and measurements from the
lab were extrapolated using a statistical fit. All three methods yielded similar results, in-
dicating buffer requirements ranging from 71 MB to 109 MB. Furthermore, the simulation
model was exercised using the final system setup of 600 RO servers, which predicted a slight
increase in buffer requirement to 115 MB.

These findings help guiding future acquisitions of network devices, ruling out inadequate
switch models. Although all three methods converged within approximately 15% of each
other, there were discrepancies among them under low network load conditions. As a result,
caution should be exercised when interpreting these findings and safety margins should be
considered. The new simulation model and automated lab experimentation tools are valuable
assets currently used to study varied aspects of the system, and will be important to assess
future hardware versions. The simulation model allows cross-validating the system in terms
of application design and scalability. The analytical and simulation models will be refined
to better match lab measurements in low network load scenarios and to better explain the
empirically identified scaling factor.
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