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Abstract. When a new long-term storage facility was needed at the Lancaster
WLCG Tier-2 Site, an architecture was chosen involving CephFS as a failure-
tolerant back-end volume, and load-balanced XRootD as an endpoint expos-
ing the volume via the HTTPS/DAVS protocols increasingly favoured by the
WLCG and other users. This allows operations to continue in the face of
disc/node failures with minimal management, and enables good utilization of
network connectivity for remote access.
We deployed a Prometheus/Loki/Grafana monitoring/alerting stack for timely
detection and resolution of failures in such a production environment. Some
custom scripts were required to adapt the off-the-shelf functional components
with monitoring. With such a monitoring system in place, failures such as disc
defects, data corruption and resource exhaustion in long-running processes can
be anticipated, and their management planned.
We describe the hardware platform and our requirements on it, and detail the
software architecture from initial design, through adaptations to face challenges
encountered during production, to present condition. Developments and con-
tributions to related projects that help to fully exploit our design decisions are
described. We include performance metrics of the system, the lessons learned
during production, and our future plans.

1 Introduction

The WLCG Tier-2 Site “UKI-NORTHGRID-LANCS-HEP” at Lancaster University (UK)
required a new solution for the site’s storage element (SE), with an opportunity to start with
a fresh installation “from the ground up”.

It was decided that a modular system, with data storage separate from the technologies
used to serve the data, would be optimal. A comprehensive monitoring infrastructure is
desired, both to provide alerting to problems and allow measurement of performance. All
components are desired to be from standard industry or community sources, i.e., “off the
shelf”.
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The basic requirements were:

• Data Server: Provide at a minimum an HTTPS endpoint, and be capable of authenticated,
integrity-checked third-party transfers.

• Data Storage: Allow for node-level failures without data loss, be capable of self-repairing,
and provide a mountable POSIX-like interface.

• Monitoring: Record real-time metrics for all components, and alert on them.

• All aspects: Cope with the data access requirements for the site, in both the transfers to and
from the site and feeding the 8000 job slots that Lancaster provides to WLCG VOs.

2 Data Server - XRootD

Any storage would need to be fronted by a gateway service, providing an authenticated end-
point for transfers to and from the space, both within the site and from external sources. The
solution we chose for this data server was XRootD. Our data server was required to have the
following minimal functionality:

• HTTPS/DAVS access

• Third Party Copy (TPC) support

• X.509/VOMS authentication

• Flexible scalability

• (For future-proofing) Token authentication support

XRootD [1] fulfilled all these criteria. It is a well known and well established software
framework for scalable and fast data access, originating from SLAC. There is a large amount
of expertise and experience in deploying, tuning and operating XRootD instances in the UK
and the WLCG communities. In addition, XRootD is being adopted by communities and
fields beyond High Energy Physics, such as astronomy.

2.1 Redirector Setup

A single XRootD host alone cannot provide the throughput to utilise the available site band-
width of 40Gb/s. Transfers can be resource-intensive, and the post-transfer integrity check
particularly requires a considerable amount of RAM. This was confirmed in a test involving
the rapid transfer of ATLAS data to the site. [2]

In order to overcome this, we deployed XRootD1 in a redirector/cluster fashion. At the
time of writing this was 4 nodes—but as noted in the HEPiX study, the improvements to
throughput performance were almost linear in proportion to the number of deployed nodes,
so it would be possible to scale up until the bottleneck was moved to the site network link.

2.2 XRootD/CephFS Integration

XRootD can be configured to use a POSIX filesystem, and CephFS presents one, so inte-
gration is mostly trivial. However, access control had to be carefully considered, and we
optimized some data flow thanks to a feature enhancement of an external file-management
tool (Rucio).

1https://github.com/mdoidge/lancsxroot



2.2.1 Authentication and ACLs

The XRootD services all write and read files under the xrootd user. Access control for
XRootD or HTTPS/DAVS is controlled through the XRootD AuthDB.

For users accessing through the CephFS mount, this posed additional challenges. One
was how to prevent unrecorded writes, or even more worrying, deletions. The best solution to
this problem was straight-forward—make the CephFS mount across the worker nodes (WNs)
read-only. To prevent users reading from other directories, we turned to extended ACLs, to
provide group-level control over reading of directory trees.

This posed one more problem—DAV directory creation (MKCOL) does not allow for set-
ting ACLs or permissions, and directories created via DAV did not inherit from their parent
directories. The solution to this final problem was to use the XRootD ofs.notify function-
ality to call a “fix permissions” script on each mkdir event. In future releases of XRootD,
there are plans to switch to a multi-user capacity, and we look forward to integrating any
developments in this area.

2.2.2 Rucio Modifications

Most of the data at Lancaster is for ingesting by ATLAS jobs running on our WNs. During
the initial deployment, these jobs just accessed their files over the internal XRootD service.
However, as the files were available through POSIX access on the WNs’ CephFS mounts,
this was incredibly inefficient!

In response, the UK Atlas Cloud Manager2 (re-)implemented a Rucio module to simply
symlink to the file’s location within the CephFS mount, rather than copy the file locally. This
greatly reduces the internal traffic accessing our XRootD servers (shown in Figure 1, where
internal reads (yellow area) are eliminated, starting at about 10:00 on 2023-03-13).

Figure 1. Rucio symlinking eliminating almost all internal reads via XRootD

For future development, native XRootD “redirect to file location” functionality would
allow more efficient access for VOs that do not use Rucio.

2.3 XRootD Server Hardware Requirements

The experience gained from our diverse physical nodes (some purchased for the role, others
repurposed) suggests that the most important hardware consideration for a high-performance
XRootD installation is RAM. Our most performant (least loaded) servers are repurposed ZFS
servers with 192GB of memory. Conversely, the redirector service is incredibly lightweight,
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causing very little load in comparison to the data services. We have near-term plans to move
the redirector onto our institution’s resilient virtualisation platform.

3 Data Storage – Ceph

We chose Ceph[3] as the system to provide our bulk data storage. Ceph is capable of scaling
easily without down time. It is designed to run on commodity hardware and mitigates the
risk of single point of failure providing a fault-tolerant system. As well as being an object
store, Ceph also provides alternative methods for accessing stored data. We have chosen a
POSIX-like interface (CephFS) and an S3/AWS interface. CephFS makes integration with
existing/new software relatively straight-forward.

3.1 Installation and Configuration

There are several ways to install Ceph. The recommended method is to use the Ceph cluster
management tool cephadm which is used to install, administrate and orchestrate the cluster.
The versions of Ceph[4] that were being maintained were Nautilus, Octopus and Pacific. We
chose to go with the newest version, Pacific. Configuration of all the nodes was straight-
forward with the use of a few YAML files, and completed without any issues.

Figure 2. Overview of Ceph cluster

Figure 2 shows our installation, which follows a typical Ceph architecture whilst Figure 3
describes each OSD node in detail.. We are physically limited to four cabinets for the Ceph
cluster, which is not ideal. In the event of a rack-level failure, the cluster will switch to a
“read-only” state. The admin nodes are in separate cabinets to avoid losing more than one
admin node in the event of a cabinet-level failure. An OSD node in each cabinet has been
designated as possible a manager+monitor node. In the event of an admin node failure, the
orchestration will automatically select an available OSD node and install the monitor and
manager services, thus restoring the minimum required number of monitor+manager nodes.



Once the admin node has been restored, the OSD node can be returned to being just an OSD
node. We chose to use the minimum of 3 admin nodes to maximise the available storage
using the available budget.

Figure 3. OSD Node Configuration. Each OSD node has
24 HDDs for object storage and 2 NVMe drives for the
OSD daemon database (DB) and write-ahead log (WAL).
Each NVMe stores the DB/WAL for 12 of the HDDs. The
advantage of this approach over mirroring the NVMe
drives is a 75% reduction in the data written to each
NVMe, significantly reducing NVMe wear. The
disadvantage is that a failed NVMe drive will cause the
failure of 12 OSD daemons.

3.2 CephFS

The existing middleware (XRootD, ARC-CE, etc) is designed to interact with a POSIX file
system. Ceph provides a POSIX-compliant interface via CephFS, which has proved simple
to configure and use on the client machines.

CephFS offers two clients, one via FUSE, and the other in the kernel. We have chosen
the kernel client as it provides better performance. We were running CentOS 7 on the client
machines which only provides Ceph Octopus and lower-version clients. Fortunately, Ceph is
designed to allow certain older clients to work with a cluster.

3.3 Administration

Since going live with the Ceph Cluster, we have had a few hard drive failures. We have also
needed to apply security updates and restart all the machines in the cluster. Both of these
actions were performed with the cluster remaining up and caused no noticeable impact from
the users’ perspective.

4 Monitoring

The installation is monitored using a Prometheus[5] time-series DB and a Loki[6] log aggre-
gator, populated using various passive and active monitoring agents co-located with storage
and gateway components. These include the Prometheus Node Exporter, Loki PromTail,
Ceph’s in-built exporter, and several custom scripts3 to work with XRootD’s f-streams and
summary reporting, and with Ceph’s presentation of SMART4 disc health metrics. Grafana[7]
provides the visualization of live and historical data to the operator, while AlertManager man-
ages live delivery of Prometheus-generated alerts via email and potentially other notification
systems. These components’ interactions are shown in Figure 4.

Challenges were addressed mostly by custom monitoring agents:

3https://github.com/lancs-gridpp/gridmon/
4"Self-Monitoring, Analysis, and Reporting Technology", intrinsic to most modern storage drives, provides met-

rics indicating the current device state and enables the predicting of hardware failures.



Figure 4. Monitoring and Alerting

• Custom scripts allow acquisition and translation of additional metrics, including interface
reachability, some diagnostic Ceph status presently not available through its exported met-
rics, SMART data (through the Ceph API), and XRootD summaries and detailed events
(which gateways push, rather than being scraped/pulled).

• Some scripts push metrics into Prometheus using its remote-write endpoint (which Loki
also uses for recordings). These include metrics which themselves are pushed to the script
(XRootD) and those which are time-consuming to collect in full (SMART).

• Static expectations are expressed as (rarely changing) metadata metrics, and allow dis-
tinction between accidental and intentional absence of metrics. For example, an alert can
include the instance name and host of an XRootD instance that has appeared to stop re-
porting, even though that information normally only appears in the metrics it no longer
produces.

Meeting these challenges in turn allows us to detect impending resource exhaustion on
XRootD nodes, to detect growing defect lists and write errors of Ceph OSD discs, and to
correlate disc failures to physical location, which is useful both for replacement, and for
identification of environmental impact (e.g., heat or vibration).

4.1 Detection of File Descriptor Exhaustion

Monitoring helped to spot an irregularly recurring issue with XRootD, whereby it would
appear to reach a cap of around 65k file descriptors attached for polling. In the first case,
this correlated to a GGUS ticket on many connection timeouts. Restarting the problematic
instance mitigated the problem. Monitoring identified which instances manifested the prob-
lem, and when, so only faulty instances needed a restart. It also showed that the redirector
was unaffected, and that instances running on newer OSes (Rocky8 vs CentOS7) were also
immune.

4.2 Monitoring Console

System health is observable through Grafana dashboards. Aspects monitored include over-
all Ceph health; lists of unused discs/counts of failed OSDs per host; unresponsive hosts,
XRootD instances and monitoring agents; host reboots and service restarts (which appear



as annotations on graphic visualizations); used and available storage capacity; recent an-
notations and current alerts; and links to other dashboards and external monitoring. The
dashboards simplify identifying problems. For example, Figure 5 shows two OSD hosts,
indicating that one of them lacks an OSD due to an absent disc (in the process of being
replaced).

Figure 5. Monitoring showing two Ceph nodes’ OSDs, indicating that one is missing

5 Architecture

The installation architecture is shown in Figure 2. A Ceph cluster provides 10PB of object
store, presented through CephFS as a POSIX file system to worker nodes and gateways.
A cluster of XRootD gateways present remote authenticated access to this file system, and
through these Rucio and FTS populate it with transfers from other sites. This serves as
preparation for jobs on the worker nodes, which consult Rucio to locate local copies of files.
Rucio’s structural awareness of the site allows it to point jobs at the local CephFS mount, and
have them directly read from the file.

The XRootD gateways also perform administration tasks, such as producing lists of stored
files or the Storage Resource Reporting JSON. Jobs with bulk output write back via the local
gateways to enforce the more sophisticated access control that XRootD can enforce for writes,
and this output can then be delivered under the control of Rucio/FTS to other sites. CephFS
also provides a separate small pool, mounted read-write, as a job data scratch area, replacing
NFS in our cluster. Gateways and storage are monitored continuously with Prometheus and
Loki.

6 Conclusion

Our chosen configuration has provided several benefits for reliability, integrity and efficiency.
We have several petabytes of storage tolerant to quickly identified disc failures, with file loss
avoided in the short term by redundancy across devices, and in the longer term by on-line
hardware replacement. Internal read access is efficient, and inter-site transfers can exploit
the available network capacity, while maintaining authorization integrity both internally and
externally. Use of CephFS has allowed XRootD gateways and Compute Nodes to continue
using the same software. Other problems like disconnections and resource exhaustion can
also be detected promptly and examined.

Despite a few hard-drive failures on the OSD nodes and system updates, the cluster has
continued to work without needing downtime. Ceph is a complex system and, as a result, it
takes extra effort to understand what it is doing and how to configure it correctly. After run-
ning the Ceph cluster, it was apparent we could have used slightly different hardware speci-
fications for the Ceph MON/MGR and MDS nodes. The MON/MGR nodes could run with



Figure 6. Lancaster Architecture

less processing power and the MDS nodes would have benefited from more RAM. XRootD
has provided a scalable and configurable interface for populating and maintaining our data.
Monitoring is a crucial aspect for running a healthy Ceph system, and has enabled us to stay
ahead of any issues.

After two years of successful running, we can conclude that the architecture fits our pur-
pose well, and provides a solid foundation for our storage operations.
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