HBase/Phoenix-based Data Collection and Storage for the
ATLAS Eventindex

Carlos Garcia Montoro', Javier Sanchez'!, Dario Barberis>*, Santiago Gonzalez de la Hoz!,
and Jose Salt'-**

'nstitut de Fisica Corpuscular (IFIC), University of Valencia and CSIC, Valencia, Spain
ZUniversity of Genoa and INFN, Genoa, Italy

Abstract. The ATLAS EventIndex is the global catalogue of all ATLAS real
and simulated events. During the LHC long shutdown between Run 2 (2015-
2018) and Run 3 (2022-2025) its components were substantially revised, and
a new system was deployed for the start of Run 3 in Spring 2022. The new
core storage system is based on HBase tables with a Phoenix interface. It al-
lows faster data ingestion rates and scales better than the old system. This paper
describes the data collection, the technical design of the core storage, and the
properties that make it fast and efficient, namely the compact and optimized de-
sign of the events table, which already holds more than 400 billion entries, and
all the auxiliary tables, and the Eventlndex Supervisor, in charge of orchestrat-
ing the whole data collection, now simplified thanks to the Loaders, the Spark
jobs that load the data into the new core system. The extractors, in charge of
preparing the pieces of data that the loaders will put into the final back-end,
have been updated too. The data migration from HDFS to HBase and Phoenix
is also described.

1 The ATLAS Eventindex

The ATLAS EventIndex is the catalogue of all real and simulated events collected or produced
by the ATLAS experiment [1]] at CERN. The LHC Run 2 implementation of the EventIndex
is fully described in [2] but since then considerable upgrades have been made, so that the
system can continue to provide a stable and reliable service for LHC Run 3 and beyond. A
general overview of the architecture, deployment and operation of the ATLAS EventIndex
for LHC Run 3 was presented at this conference in Ref. [3]].

In this paper we describe how the EventIndex data is collected and stored for LHC Run 3,
focussing on the updates made in two very important components: the Data Collection and
the Data Storage systems. The implementation of these updates allows us to address the
performance challenges of the current run (Run 3) and the future High-Luminosity LHC
runs.

*e-mail: Dario.Barberis@cern.ch
**e-mail: Jose.Salt@ific.uv.es
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

2 Data Collection system

The Data Collection system consists of the processes that bring together the index metadata
produced by jobs run at Tier-0 or on the Grid, validates this information, assuring correctness
and completeness, and loads the metadata into the EventIndex back-end storage system. So
far we collected about 533 billion event records, contained in 32 million indexed files that
belong to 280 thousand indexed datasets. Each event record contains the identifiers of this
event (run and event number, trigger stream), the trigger information and the pointer to the
file containing this event.

The Eventlndex components have undergone a series of evolution steps. Initially the
Data Collection system was exclusively based on messaging from producers to consumers.
This made the system cumbersome and not re-playable. The solution taken was to have a
back-end based on Hadoop HDFS files [4] organized per dataset. One of the most important
updates has been the implementation of a supervisor process, the Data Collection Supervisor
that was introduced to orchestrate the whole data collection procedure. Among the main
advantages we have are the accountability of data collection and validation, and an Amazon-
S3-like Object Store [S] at CERN that replaced the pure messaging architecture. With these
implementations the system is simpler and more scalable and the production can be stored,
backed up, and replayed.

The new back-end store is based on Apache HBase [6], which is compatible with the
Apache Phoenix [7] SQL interface. This allows improved data structures and simplified
management. The consumers are replaced by Spark/Scala Loaders, obtaining a better per-
formance. The result is improved scalability and adaptability, using Open Source industry
standards.

Rucio, e .

3 TO, PanDA _—— '
Data roduction s _ Summary Phoenix
1 Extractor —®| Summary —¥% Supervisor ’
(TO + Grid Jobs) / Loader Apps
Data File) + N

. 7
' \ *\\\ 9 1‘:\\:
Object H ‘ ""_ :
. Store | DSType Tigvenu Dataset |canonical Events
EOS v Eventindex in HBase/Phoenix

Fallback

Figure 1. Schema of the data flow within the Data Collection system. The numbers in red mark the
different steps in the workflow that are explained in the text.

3 Data Collection workflow

The process of Data Collection can be schematized as displayed in Figure [T} The workflow
comprises the following steps:

1 — All data files to be indexed are processed on the Grid or on the CERN Tier-0 cluster by
the EventIndex Producer script.

2 — The Producer extracts the event metadata and saves them in a temporary file, which is
sent to the CERN Object Store, or to CERN EOS as a fall-back solution. Around 0.1% of
transfers to the Object Store fail. Since grid jobs run all over the world on over hundred sites,
these failures comprise different causes like site misconfigurations, proxy failures, network
problems, etc.

3 — Summary information is sent by each job to CERN through the ActiveMQ [8] messaging
server. Potentially, the producer could communicate with the supervisor directly, but we
considered more useful to have the CERN ActiveMQ high-availability service as a buffer in
case the supervisor is down or overloaded.

4 — When all files belonging to a dataset are processed, a validation step is launched to check
the data completeness and consistency, also comparing the event counts with other metadata
sources such as the Rucio data management system [9] and the PanDA workflow management
system [10].

5 — The Supervisor creates the identifiers needed to identify the dataset in the Phoenix event
table, the DSPID (dataset identifier) and the dataTypeld (data type identifier), and creates and
queues a new PhoenixLoader object.

6 — The Phoenix thread enforces a policy that limits the number of running loaders and avoids
concurrency between loaders with the same DSPID, follows the progress of the applications,
validates the result of the application and updates the Phoenix tables.

7 — The PhoenixLoader application is a YARN [L1]] application in charge of filling the events
information of a dataset.

8 — Once completed the loading task, the Loader reports the result to the Supervisor. The
PhoenixLoader object handles and records Phoenix Loader application related info, like tim-
ing, task, dataset and validation version, status and errors.

9 — At the end of processing the Supervisor updates the other tables.

4 Data Storage logical architecture

The Data Storage system was completely re-implemented in advance of LHC Run 3, after
extensive studies covering several ways to store, search and retrieve the EventIndex data

o _<canonical

|
|

|

1

1

|

1 datasets
L9

|

I

1

|

I
I
I
I
- L D O
AN AN
dstypes events trigmenu

Figure 2. Logical architecture of the Data Storage system, showing the "canonical", "datasets" and
"events" tables that keep metadata related respectively to containers, datasets and events, and the auxil-
iary "dstypes" and "trigmenu" tables with information related to data types and trigger menus.

datasets

canonical

events

® dspid : integer

@ dstypeid : smallint
@ eventno : bigint

@ seq : smallint

a.tid : integer
a.sr: binary(32)
a.mcc : integer
a.mcw : float

@ runno : integer

@ project : varchar{200)

® datatype : varchar(200)

® streamname : varchar(200)
® prodstep : varchar(200)

® version : varchar(200)

® tid : integer

@ dspid : integer

® dstypeid : smallint

@ runno : integer

@ project : varchar(200)

@ datatype : varchar{200)

® streamname : varchar{200)
@ prodstep : varchar(200)

@ version : varchar(200)

@ dspid : integer

@ dstypeid : smallint

dstypes

® type : tinyint
® name : varchar(20)

id : smallint

smk : integer
events_rucio : bigint

smk : integer
events_rucio : bigint
files : integer

trigmenu

® smk : integer
@ type : tinyint
® name : varchar(200)

files : integer

events : bigint
events_unig : bigint
events_dup : bigint
files_dup : integer

rank : smallint

status : varchar(200)
rucio_at : timestamp
updated_at : timestamp
dups_at : timestamp
trigger_at : timestamp
is_open : boolean
is_deleted : boolean
has_raw : boolean
has_trigger : boolean
prov_seen : smallint ARRAY[]
sr_cnt : varchar(200)
sr_clid : varchar(200)
sr_tech : varchar(200)
name : varchar(250)

events : bigint
events_uniq : bigint
events_dup : bigint
files_dup : bigint

rank : smallint

status : varchar(200)
rucio_at : timestamp
updated_at : timestamp
dups_at : timestamp
trigger_at : timestamp
is_open : boolean
is_deleted : boolean
has_raw : boolean
has_trigger : boolean
prov_seen : smallint ARRAY[]
is_rucio_eq : boolean
sr_cnt : varchar(200)
sr_clid : varchar(200)
sr_tech : varchar(200)
name : varchar(250)

b.pv : binary(34) ARRAY[] id : smallint

c.lb : integer

c.bcid : integer
c.Ipsk : integer
c.etime : timestamp
c.id : integer

c.tbp : smallint[]
c.tap : smallint{]
c.tav : smallint[]

d.|bl : integer

d.bcidl : integer
d.hpsk : integer
d.Iph : smallint(]
d.ph : smallint[]

Figure 3. Table schemas of the Data Storage system implemented in HBase. The top block of each
table shows the components of the primary keys, and the other blocks show the contents of each table
(divided into column families for the events table) and their representations.

[12]. The logical architecture of the Data Storage system is shown in Figure 2] It follows the
organisation of ATLAS data: events are grouped into files that belong to datasets. Datasets
are themselves grouped into containers, and this is the unit of data processing for production
and analysis tasks.

The EventIndex information in HBase is organised into a "canonical" table that contains
metadata related to containers, a "datasets" table with information related to datasets, and the
"events" table with event-related information. Two auxiliary tables, "dstypes" and "trigmenu”
contain information that can be pointed to from the other tables, respectively on dataset struc-
ture and on the trigger menus that are active during different runs.

4.1 Event Record Table

The "events" table is the most important component of the storage system, as it has to contain
several hundred billion rows (one per event record), it has to be continuously updated with
new data and it has to be searched with good performance. As shown in Figure [3] the first
block corresponds to a very optimized primary key. Since the datasets names are too long,
generated dataset identifiers have to be used instead. The dspid and dstypeid are generated by
the supervisor by means of the autoincremental feature of its RDBMS applied respectively
to the dataset name (excluding the data type field) and to the data type string. Monotonically
increasing keys are undesirable in HBase, so reversing the bits of dspid populates all the key
space uniformly as shown in Figure[d] In this way we achieved a balanced use of all regions
and region servers, and the locality of events of each dataset, as each dspid and dstypeid pair
identifies a dataset, and the locality of derivations for dataset overlap calculations, as the same
dspid and different dstypeid identify related datasets (originating from the same raw data, or
simulated events. Seq is a CRC16 to record duplicates, if any, with the first bit reserved to
distinguish between data and MC and bits 2 to 4 for versioning.

Bit reverse

—_—

Figure 4. Bit Reverse schema.

Another important feature is that this primary key is compact: it is small, 128 bits, and
identifies the dataset with a pair of numbers, no names. Similarly, the Trigger information is
stored as smallint arrays.

In other blocks one can find the families to read just what is needed for each use case:

e For event picking in the second block

e For provenance, in the third block

e For Level-1 trigger operations (count, overlap,...) in the fourth block
e For Level-2 and High-Level Trigger operations, in the fifth block

One of the advantages of this structure is that it is compatible with Phoenix, but without
using its exclusive features; thus it depends only on HBase, but not on Phoenix.

5 Phoenix Importer and Loader

To write the EventIndex data into the HBase/Phoenix tables, Spark [13]] jobs written in the
Scala language [14]] are used, using the Resilient Distributed Dataset API [[15].

The PhoenixImporter could read the data present in the old HDFS implementation of the
EventIndex; it was used during the transition to the current storage system to migrate the old
data to HBase/Phoenix. The PhoenixLoader can read the EventIndex data from the CERN
Object Store (S3). Both the Importer and Loader insert data into the new HBase tables in the
same format.

The Phoenix Loader and Importer data flow, shown in Figure[5] consists of the following
steps:

1 — Prepare the data source to read EventIndex data files.

2 —Join all files for a dataset into one.

3 — Take the first 10 rows to examine the trigger existence and determine the data format.

4 — Get EventIndex records and decode them into the new schema. Count events, GUIDs,
and dstypeids. This step represents most of the work done by the Loader.

5 — Filter null rows that come from records which do not contain event information.

6 — Drop empty columns: trigger, MC channel and weight if non-existent.

7 — Write to Parquet data format [16] if requested.

8 — Reduce the number of partitions.

9 — Write to HBase/Phoenix.

Note that the previous system was based on HDFS MapFiles (comma-separated sequen-
tial files), one per dataset. Eventlndex files on the Object Store had to be processed and
transferred to HDFS by dedicated servers running Java consumers, then a second step was
needed to sort all events in a dataset by event number, and a third step to augment the infor-
mation with trigger names. In the new system based on HBase/Phoenix there is no need to

3
1

.take(10) ~--------- 3 7
SPBDataSource 2 :)
.union() ' .write()
4 5 6"
.map() filter() .drop()
9
++ .coallesce() .write()

Figure 5. Workflow of the Phoenix Loaders and Importers. The numbers mark the actions taken by
each component that are explained in the text.

have private servers running the consumers, since they are replaced by Spark/Scala Loaders
that run on the same CERN Hadoop infrastructure. Besides that, events are implicitly sorted
by event number (within the dataset) since the key is built with this purpose in mind and
trigger information is decoded by the loader itself. Furthermore, the Data Collection became
more resilient because of the use of Resilient Distributed Dataset by the new Spark EventIn-
dex Loader, so data ingestion into HBase has more probability to succeed in situations were
the Object Store or HBase have problems.

6 Conclusions

Major updates have been applied to the EventIndex Data Storage system in order to improve
its performance for LHC Run 3. The main store is now implemented as a set of very large
but very optimized HBase tables with a Phoenix interface for SQL commands.

As a result, the Data Collection component is also working reliably, including Producers,
Supervisor, Loaders, and Importers. Significant work has been invested in setting up and
running an automatic, self-managed, self-regulated and fully accountable data migration pro-
cedure from HDFS to HBase/Phoenix, and setting up and running the regular data collection
for HBase/Phoenix.

The Spark data processing paradigm and the Scala language allowed us to design a
simpler and more robust data loading model in HBase/Phoenix than was possible with the
previous data storage implementation in HDFS MapFiles. Both the PhoenixLoader and the
PhoenixImporter have been running in stable production with no issues since spring 2022.
They are being used to populate the production HBase/Phoenix database.

This work was partially supported by MICINN in Spain under grant PID2019-104301RB-
C21.

References

[1] ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider,
JINST 3 (2008) S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

[2] Barberis D. et al., The ATLAS Eventlndex: A BigData Catalogue for All ATLAS Ex-
periment Events, Comput.Softw.Big Sci. 7 (2023) 1,2. https://doi.org/10.1007/s41781-023-
00096-8

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1007/s41781-023-00096-8
https://doi.org/10.1007/s41781-023-00096-8

[3] Gallas E. J., et al., "Deployment and Operation of the ATLAS EventIlndex for LHC
Run 3", these proceedings (2023).

[4] Apache Hadoop and associated tools: https://hadoop.apache.org

[5] Fernandez Casani A. et al., A reliable large distributed object store based platform for
collecting event metadata, J Grid Comp (2021) 19:39. https://doi.org/10.1007/s10723-
021-09580-0

[6] Apache HBase: https://hbase.apache.org

[7]1 Apache Phoenix: https://phoenix.apache.org

[8] ActiveMQ: http://activemq.apache.org

[9] Barisits M. et al., Rucio: Scientific Data Management, Comput.Softw.Big Sci. 3 (2019)
11. https://doi.org/10.1007/s41781-019-0026-3

[10] Barreiro Megino F.H. et al., PanDA for ATLAS distributed computing in the next decade,
J.Phys.Conf.Ser. 898:052002 (2017). https://doi.org/10.1088/1742-6596/898/5/052002

[11] Apache Hadoop YARN: https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/ YARN.html

[12] Barberis D. et al., The ATLAS Eventlndex for LHC Run 3, EPJ Web of Conferences 245,
04017 (2020). https://doi.org/10.1051/epjcont/202024504017

[13] Apache Spark: https://spark.apache.org

[14] Scala programming language: https://www.scala-lang.org

[15] Resilient Distributed Dataset API: https://www.sciencedirect.com/topics/computer-
science/resilient-distributed-dataset

[16] Parquet data format: https://parquet.apache.org

https://hadoop.apache.org
https://doi.org/10.1007/s10723-021-09580-0
https://doi.org/10.1007/s10723-021-09580-0
https://hbase.apache.org
https://phoenix.apache.org
http://activemq.apache.org
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1088/1742-6596/898/5/052002
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://doi.org/10.1051/epjconf/202024504017
https://spark.apache.org
https://www.scala-lang.org
https://www.sciencedirect.com/topics/computer-science/resilient-distributed-dataset
https://www.sciencedirect.com/topics/computer-science/resilient-distributed-dataset
https://parquet.apache.org

	The ATLAS EventIndex
	Data Collection system
	Data Collection workflow
	Data Storage logical architecture
	Event Record Table

	Phoenix Importer and Loader
	Conclusions

